Capacitation, the Acrosome Reaction, and Motility in Mammalian Sperm

2020 ◽  
pp. 77-90
Author(s):  
Susan S. Suarez ◽  
John W. Pollard
2021 ◽  
Vol 12 ◽  
Author(s):  
Andrés Aldana ◽  
Jorge Carneiro ◽  
Gustavo Martínez-Mekler ◽  
Alberto Darszon

The acrosome reaction (AR) is an exocytotic process essential for mammalian fertilization. It involves diverse physiological changes (biochemical, biophysical, and morphological) that culminate in the release of the acrosomal content to the extracellular medium as well as a reorganization of the plasma membrane (PM) that allows sperm to interact and fuse with the egg. In spite of many efforts, there are still important pending questions regarding the molecular mechanism regulating the AR. Particularly, the contribution of acrosomal alkalinization to AR triggering physiological conditions is not well understood. Also, the dependence of the proportion of sperm capable of undergoing AR on the physiological heterogeneity within a sperm population has not been studied. Here, we present a discrete mathematical model for the human sperm AR based on the physiological interactions among some of the main components of this complex exocytotic process. We show that this model can qualitatively reproduce diverse experimental results, and that it can be used to analyze how acrosomal pH (pHa) and cell heterogeneity regulate AR. Our results confirm that a pHa increase can on its own trigger AR in a subpopulation of sperm, and furthermore, it indicates that this is a necessary step to trigger acrosomal exocytosis through progesterone, a known natural inducer of AR. Most importantly, we show that the proportion of sperm undergoing AR is directly related to the detailed structure of the population physiological heterogeneity.


Reproduction ◽  
2010 ◽  
Vol 140 (5) ◽  
pp. 673-684 ◽  
Author(s):  
Yadira Bastián ◽  
Ana L Roa-Espitia ◽  
Adela Mújica ◽  
Enrique O Hernández-González

Research on fertilization in mammalian species has revealed that Ca2+is an important player in biochemical and physiological events enabling the sperm to penetrate the oocyte. Ca2+is a signal transducer that particularly mediates capacitation and acrosome reaction (AR). Before becoming fertilization competent, sperm must experience several molecular, biochemical, and physiological changes where Ca2+plays a pivotal role. Calpain-1 and calpain-2 are Ca2+-dependent proteases widely studied in mammalian sperm; they have been involved in capacitation and AR but little is known about their mechanism. In this work, we establish the association of calpastatin with calpain-1 and the changes undergone by this complex during capacitation in guinea pig sperm. We found that calpain-1 is relocated and translocated from cytoplasm to plasma membrane (PM) during capacitation, where it could cleave spectrin, one of the proteins of the PM-associated cytoskeleton, and facilitates AR. The aforementioned results were dependent on the calpastatin phosphorylation and the presence of extracellular Ca2+. Our findings underline the contribution of the sperm cytoskeleton in the regulation of both capacitation and AR. In addition, our findings also reveal one of the mechanisms by which calpain and calcium exert its function in sperm.


1981 ◽  
Vol 91 (1) ◽  
pp. 77-82 ◽  
Author(s):  
R J Mrsny ◽  
S Meizel

The role of a K+ ion influx and Na+,K+-ATPase activity in the hamster sperm acrosome reaction (AR) was examined, using a range of concentrations of K+,K+ ionophores and a Na+,K+-ATPase inhibitor. Washed epididymal hamster sperm, capacitated in vitro in an artificial medium containing 2 mM Ca2+, 147 mM Na+, and 3, 6, 12, 18, or 24 mM K+, began undergoing the AR after 3 h of incubation. Sperm incubated in low K+ (0.9 mM) failed to undergo the AR even after 5 h of incubation. Sperm in 0.9 mM K+ could be induced to undergo the AR when either K+ (12 mM) alone or K+ (12 mM) with 0.1 microM nigericin was added after 3.5 h of incubation. The addition of K+ alone stimulated the AR in 30 min, whereas nigericin plus K+ stimulated the AR 15 min after addition. Neither nigericin added alone (0.9 mM K+) nor nigericin plus 12 mM K+ added to a low Ca2+ (0.35 mM) system resulted in acrosome reactions. Valinomycin (1 nM) did not stimulate the AR when added together with K+ (3-24 mM) to sperm incubated in 0.9 mM K+ for 3.5 h but markedly decreased sperm motility. Micromolar levels of ouabain blocked the AR when added between t = 0--3 h to sperm incubated with 3-24 mM K+. Inhibition of AR by the addition of 1 microM ouabain to sperm incubated with 3 mM K+ was completely reversed by the addition of 0.1 microM nigericin at t = 3.5 h. These results suggest that Na+,K+-ATPase activity and the resulting K+ influx are important for the mammalian sperm AR. Some similarities between requirements for the hamster sperm AR and secretory granule exocytosis are discussed.


Reproduction ◽  
2020 ◽  
Vol 160 (3) ◽  
pp. 393-404
Author(s):  
Tania Reyes-Miguel ◽  
Ana L Roa-Espitia ◽  
Rafael Baltiérrez-Hoyos ◽  
Enrique O Hernández-González

Mammalian sperm cells acquire fertilizing capacity as a result of a process termed capacitation. Actin polymerization is important for capacitation; inhibiting actin polymerization prevents the adhesion and fusion of the sperm with the ovule. The main function of RHO proteins CDC42 and RHOA is to direct actin polymerization. Although these two RHO proteins are present in mammalian sperm, little is known about their role in capacitation, the acrosome reaction, and the way in which they direct actin polymerization. The purpose of this study was to determine the participation of CDC42 and RHOA in capacitation and the acrosome reaction and their relationship with actin polymerization using guinea pig sperm. Our results show that the inhibition of CDC42 and RHOA alters the kinetics of actin polymerization, capacitation, and the acrosome reaction in different ways. Our results also show that the initiation of actin polymerization and RHOA activation depend on the activation of CDC42 and that RHOA starts its activity and effect on actin polymerization when CDC42 reaches its maximum activity. Given that the inhibition of ROCK1 failed to prevent the acrosomal reaction, the participation of RHOA in capacitation and the acrosomal reaction is independent of its kinase 1 (ROCK1). In general, our results indicate that CDC42 and RHOA have different roles in capacitation and acrosomal reaction processes and that CDC42 plays a preeminent role.


Author(s):  
Cintia Stival ◽  
Lis del C. Puga Molina ◽  
Bidur Paudel ◽  
Mariano G. Buffone ◽  
Pablo E. Visconti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document