Numerical study of distortional-lateral torsional buckling interaction of single channels restrained by angle cleats

Author(s):  
G.M. Bukasa ◽  
M. Dundu
2016 ◽  
Vol 102 ◽  
pp. 264-275 ◽  
Author(s):  
Luís Valarinho ◽  
João R. Correia ◽  
Miguel Machado-e-Costa ◽  
Fernando A. Branco ◽  
Nuno Silvestre

2017 ◽  
Vol 113 ◽  
pp. 205-216 ◽  
Author(s):  
Bo Yang ◽  
Shao-Bo Kang ◽  
Gang Xiong ◽  
Shidong Nie ◽  
Ying Hu ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 941
Author(s):  
Ida Mascolo ◽  
Mariano Modano ◽  
Antimo Fiorillo ◽  
Marcello Fulgione ◽  
Vittorio Pasquino ◽  
...  

Metallic thin-walled beams with continuously varying cross-sections loaded in compression are particularly sensitive to instability problems due to lateral-torsional buckling. Such a phenomenon depends on several parameters, including the cross-sectional properties along the entire length, material properties, load distribution, support, and restraint conditions. Due to the difficulty of obtaining analytic solutions for the problem under consideration, the present study takes a numerical approach based on a variational formulation of the lateral-torsional buckling problem of tapered C-beams. Numerical simulations are compared with experimental results on the buckling of a physical model of at thin-walled beam with uniformly varying cross-section, with the aim of assessing the accuracy of the proposed approach. The good agreement between numerical and experimental results and the reduced computational effort highlight that the proposed variational approach is a powerful tool, provided that the geometry of the structure and the boundary conditions are accurately modeled.


2021 ◽  
pp. 136943322110572
Author(s):  
Ying Gao ◽  
Feiyang Xu ◽  
Xinmiao Meng ◽  
Ye Zhang ◽  
Hongda Yang

The lateral torsional buckling (LTB) of steel-timber composite (STC) beam with partial interaction was investigated in this paper. The composite beam is constructed by connecting the timber to both flanges of the H-shaped steel with bolts or screws. Twelve push-out specimens were designed to evaluate the shear performance of bolt or screw connectors. It was shown that the slip stiffness and the shear bearing capacity of the connectors increased with the thickness of timber increasing. Then, eight full-scale composite beams with lengths of 6000 mm were studied through bending tests and compared to a bare steel beam. The experimental behaviors of the specimens were identified, including the failure mode, load-deflection relationship and load-strain response. The LTB phenomenon and composite action were discussed by analyzing the strain distribution, stiffness and strength. The results demonstrated that the STC beams fastened with bolts or screws displayed partial composite action. Although the stiffness of the composite beam showed little augmentation, the maximum strength of the composite beam substantially increased by suppressing the LTB phenomenon. A finite element analysis was conducted to reveal the failure mechanism of the specimens with different geometric and physical parameters, including the number of timber layers, the interface shear stiffness and the initial imperfection. It was found that increasing the number of timber layers in the upper flange suppressed the lateral torsional buckling, and the interface shear stiffness was the key factor to control the stiffness and failure modes of STC beams.


Sign in / Sign up

Export Citation Format

Share Document