Multimedia Data Compression

2019 ◽  
pp. 107-131
Author(s):  
Sreeparna Banerjee
Author(s):  
Manjunath Ramachandra

If a large data transactions are to happen in the supply chain over the web, the resources would be strained and lead to choking of the network apart from the increased transfer costs. To use the available resources over the internet effectively, the data is often compressed before transfer. This chapter provides the different methods and levels of data compression. A separate section is devoted for multimedia data compression where a certain losses in the data is tolerable during compression due to the limitations of human perception.


2012 ◽  
Vol 19 (2) ◽  
pp. 103-115 ◽  
Author(s):  
Reza Moradi Rad ◽  
Abdolrahman Attar ◽  
Asadollah Shahbahrami

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Junho Park ◽  
Jaesoo Yoo

We have proposed preprocessing techniques for high-efficiency data compression in wireless multimedia sensor networks. To do this, we analyzed the characteristics of multimedia data under the environment of wireless multimedia sensor networks. The proposed preprocessing techniques consider the characteristics of sensed multimedia data to perform the first stage preprocessing by deleting the low priority bits that do not affect the image quality. The second stage preprocessing is also performed for the undeleted high priority bits. By performing these two-stage preprocessing techniques, it is possible to reduce the multimedia data size in large. To show the superiority of our techniques, we simulated the existing multimedia data compression scheme with/without our preprocessing techniques. Our experimental results show that our proposed techniques increase compression ratio while reducing compression operations compared to the existing compression scheme without preprocessing techniques.


Author(s):  
Phillip K.C. Tse

In the previous chapter, we see that the performance of a storage system depends on the amount of data being retrieved. The size of multimedia objects are however very large in size. Thus, the performance of the storage system can be enhanced if the object sizes are reduced. Therefore, multimedia objects are always compressed when they are stored. In addition, the performance of most subsystems depends on the amount of data being processed. Since multimedia objects are large in size, their accessing times are long. Thus, multimedia objects are always kept in their compressed form when they are being stored, retrieved, and processed. We shall describe the commonly used compression techniques and compression standards in this chapter. We first describe the general compression model in the next section. Then, we explain the techniques in compressing textual data. This is followed by the image compression techniques. In particular, we shall explain the JPEG2000 compression with details. Lastly, we explain the MPEG2 video compression standard. These compression techniques are helpful to understand the multimedia data being stored and retrieved.


Author(s):  
Ning Ma

AbstractThe emergence of multimedia data has enriched people’s lives and work and has penetrated into education, finance, medical, military, communications, and other industries. The text data takes up a small space, and the network transmission speed is fast. However, due to its richness, the multimedia data makes it occupy an ample space. Some high-definition multimedia information even reaches the GB level, and the multimedia data network transmission is relatively slow. Compared with the traditional scalar data, the multimedia data better describes the characteristics of the transaction, but at the same time, the multimedia data itself has a large capacity and must be compressed. Nodes of wireless multimedia sensor networks have limited ability to process data. Traditional data compression schemes require high processing power of nodes and are not suitable for sensor networks. Therefore, distributed video codec scheme in recent years becomes one of the hot multimedia sensor network technologies, which is a simple coding scheme, coding complexity of decoding performance. In this paper, distributed video codec and its associated knowledge based on the study present a distributed video coding scheme and its improvements. Aiming at the problem that the traditional distributed video coding scheme cannot accurately decode the motion severe region and the boundary region, a distributed video coding algorithm based on gradient-domain ROI is proposed, which can enhance the coding efficiency of the severe motion region and improve the decoded image while reducing the code rate and quality, ultimately reducing sensor node energy consumption.


2021 ◽  
Vol 10 (1) ◽  
pp. 22-28
Author(s):  
S. Karthigai Selvam ◽  
S. Selvam

In recent days, the data are transformed in the form of multimedia data such as images, graphics, audio and video. Multimedia data require a huge amount of storage capacity and transmission bandwidth. Consequently, data compression is used for reducing the data redundancy and serves more storage of data. In this paper, addresses the problem (demerits) of the lossy compression of images. This proposed method is deals on SVD Power Method that overcomes the demerits of Python SVD function. In our experimental result shows superiority of proposed compression method over those of Python SVD function and some various compression techniques. In addition, the proposed method also provides different degrees of error flexibility, which give minimum of execution of time and a better image compression.


Sign in / Sign up

Export Citation Format

Share Document