Soil constituents

Author(s):  
Ivan Gratchev ◽  
Dong-Sheng Jeng ◽  
Erwin Oh
Keyword(s):  
Geoderma ◽  
1980 ◽  
Vol 23 (3) ◽  
pp. 223
Author(s):  
G. Stanford
Keyword(s):  

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1641
Author(s):  
Otavio Silveira Gravina ◽  
Glenio Guimarães Santos ◽  
Vladia Correchel ◽  
Gustavo Cassiano da Silva ◽  
Lucas de Castro Medrado ◽  
...  

Brazil is the world leader in the production and export of sugarcane derivatives, and its center-south region is the main producer. Fertigation with byproducts from bioethanol production can be adopted as a strategy to mitigate the soil physical deterioration resulting from the intensification of mechanized farming practices. The objective of this study was to evaluate the behavior of soil physical attributes under sugarcane cultivation in different crop cycles in fertigated areas in the midwest region of Brazil. The samples were collected in different Ferralsol layers (0.0–0.1, 0.1–0.2, 0.2–0.3, and 0.4–0.5 m) and fertigated crop cycles (first, third, fifth, seventh, and twelfth sugarcane cycles), as well as from native Cerrado vegetation (reference area), and the weight and volume relationships of the soil constituents and total soil were evaluated. Soil physical attributes are affected by sugarcane cultivation cycles and fertigation with vinasse. In the short term (third cycle), the results indicate deterioration of the physical attributes of the soil. However, throughout the cycles of sugarcane culture via fertigation (twelve cycles), the addition of vinasse leads to improvements in physical attributes and soil aggregation, promoting an increase in the longevity of the sugarcane crop. Therefore, the evaluation of the physical attributes of the soil in areas with vinasse application in different sugarcane cultivation cycles should be analyzed in areas of different regions, as this management practice indicates a high potential to increase the longevity of cultivation sugarcane, reducing production costs in the bioenergy sector.


Author(s):  
Eric P. Verrecchia ◽  
Luca Trombino

AbstractKubiëna (1938) was the first to introduce the concept of fabric in soil micromorphology, so this term has been used in soil micromorphology for a long time. The term “fabric” was initially applied to rocks by geologists and petrologists. This type of fabric is defined as the “factor of the texture of a crystalline rock which depends on the relative sizes, the shapes, and the arrangement of the component crystals” (Matthews and Boyer 1976). This definition has been adapted for soil micromorphology and its latest definition has been given by Bullock et al. (1985) as: “soil fabric deals with the total organization of a soil, expressed by the spatial arrangement of the soil constituents (solid, liquid, and gaseous), their shape, size, and frequency, considered from a configurational, functional and genetic view-point”. In conclusion, the soil micromorphologist should consider the fabric as an arrangement and∕or organization of soil constituents.


2017 ◽  
Vol 14 (1) ◽  
pp. 107-116
Author(s):  
Baghdad Science Journal

A field experiment is conducted to study the effect of different levels of peat (0, 25, 50, 75, and 100 Mg ha-1 to uncropped and cropped soil to wheat. Soil samples are taken in different period of time (0, 3, 30, 60, 90, 120, and 180 days after cultivation to determine (NaHCO3-Exteractable P at 3 different depths (0-10, 10-20, and 20-30 cm). Field Experiment is conducted in a randomized complete block design (RCBD) with four replicates. Wheat, Al-Rasheed variety, is cultivated as a testing crop. The entire field is equally dived in two divisions. One of the two divisions is cultivated to wheat and the second is left uncropped. The effect of five levels of peat namely 0, 25, 50, 75, 100 Mg ha-1 is investigated. Soils are fully analyzed to determine its physical and chemical characteristics. The soil samples are collected after 3, 30, 60, 90, 120, and 180 days for determining essential parameters and indicators that reflect the effect of the level of peat applications. Sodium bicarbonate - extractable P in uncropped and cropped soils at all depths, markedly decreases with time after peat application which has been attributed to plant uptake and rapid reaction of P with soil constituents. Sodium bicarbonate - extractable P with time in soil receiving 50 Mg ha-1 in both uncropped and cropped soil linearly decreases with the time of cultivation


Sign in / Sign up

Export Citation Format

Share Document