The Development of Addition and Subtraction Problem-Solving Skills

2020 ◽  
pp. 9-24 ◽  
Author(s):  
Thomas P. Carpenter ◽  
James M. Moser
Author(s):  
Nicolas Michaux ◽  
Nicolas Masson ◽  
Mauro Pesenti ◽  
Michael Andres

Fingers offer a practical tool to represent and manipulate numbers during the acquisition of arithmetic knowledge, usually with a greater involvement in addition and subtraction than in multiplication. In adults, brain-imaging studies show that mental arithmetic increases activity in areas known for their contribution to finger movements. It is unclear, however, if this truly reflects functional interactions between the processes and/or representations controlling finger movements and those involved in mental arithmetic, or a mere anatomical proximity. In this study we assessed whether finger movements interfere with basic arithmetic problem solving, and whether this interference is specific for the operations that benefit the most from finger-based calculation strategies in childhood. In Experiment 1, we asked participants to solve addition, subtraction, and multiplication problems either with their hands at rest or while moving their right-hand fingers sequentially. The results showed that finger movements induced a selective time cost in solving addition and subtraction but not multiplication problems. In Experiment 2, we asked participants to solve the same problems while performing a sequence of foot movements. The results showed that foot movements produced a nonspecific interference with all three operations. Taken together, these findings demonstrate the specific role of finger-related processes in solving addition and subtraction problems, suggesting that finger movements and mental arithmetic are functionally related.


2021 ◽  
pp. 073194872110614
Author(s):  
Irene Polo-Blanco ◽  
María J. González López ◽  
Alicia Bruno ◽  
Jon González-Sánchez

This study, which used a multiple baseline across students’ design, examines the effectiveness of a modified schema-based instructional approach to improve the mathematical word problem-solving performance of three students with mild intellectual disability, two of them with autism spectrum disorder. Following the intervention, the three students improved their performance when solving addition and subtraction change word problems; however, their performance was inconsistent with change word problems. The effects of the instruction were generalized to two-step addition and subtraction word problems for the three participants. Moreover, the results were generalized to an untrained setting and were maintained 8 weeks after the instruction. The implications of these findings for teaching problem-solving skills to students with intellectual disability are discussed.


2016 ◽  
Vol 32 (1) ◽  
pp. 52-60 ◽  
Author(s):  
Katarina Krkovic ◽  
Sascha Wüstenberg ◽  
Samuel Greiff

Abstract. Skilful collaborative problem-solving is becoming increasingly important in various life areas. However, researchers are still seeking ways to assess and foster this skill in individuals. In this study, we developed a computer-assisted assessment for collaborative behavior (COLBAS) following the experiment-based assessment of behavior approach (objective personality tests; Cattell, 1958 ). The instrument captures participants’ collaborative behavior in problem-solving tasks using the MicroDYN approach while participants work collaboratively with a computer-agent. COLBAS can thereby assess problem-solving and collaborative behavior expressed through communication acts. To investigate its validity, we administered COLBAS to 483 German seventh graders along with MicroDYN as a measure of individual problem-solving skills and questions regarding the motivation to collaborate. A latent confirmatory factor analysis suggested a five-dimensional construct with two problem-solving dimensions (knowledge acquisition and knowledge application) and three collaboration dimensions (questioning, asserting, and requesting). The results showed that extending MicroDYN to include collaborative aspects did not considerably change the measurement of problem-solving. Finally, students who were more motivated to collaborate interacted more with the computer-agent but also obtained worse problem-solving results.


1999 ◽  
Vol 13 (1) ◽  
pp. 33-45 ◽  
Author(s):  
Sherryl H. Goodman ◽  
Bill Barfoot ◽  
Alice A. Frye ◽  
Andrea M. Belli

2013 ◽  
Author(s):  
William S. Shaw ◽  
Michael Feuerstein ◽  
Virginia I. Miller ◽  
Patricia M. Wood

Sign in / Sign up

Export Citation Format

Share Document