Abel-Type Integral Equation

Author(s):  
A.G. Ramm ◽  
A.I. Katsevich
2021 ◽  
Vol 10 (6) ◽  
pp. 2687-2710
Author(s):  
F. Akutsah ◽  
A. A. Mebawondu ◽  
O. K. Narain

In this paper, we provide some generalizations of the Darbo's fixed point theorem and further develop the notion of $F$-contraction introduced by Wardowski in (\cite{wad}, D. Wardowski, \emph{Fixed points of a new type of contractive mappings in complete metric spaces,} Fixed Point Theory and Appl., 94, (2012)). To achieve this, we introduce the notion of Darbo-type $F$-contraction, cyclic $(\alpha,\beta)$-admissible operator and we also establish some fixed point and common fixed point results for this class of mappings in the framework of Banach spaces. In addition, we apply our fixed point results to establish the existence of solution to a Volterra type integral equation.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Ming Li ◽  
Wei Zhao

This paper gives a novel explanation of the integral equation of Abel’s type from the point of view of Mikusinski’s operational calculus. The concept of the inverse of Mikusinski’s operator of fractional order is introduced for constructing a representation of the solution to the integral equation of Abel’s type. The proof of the existence of the inverse of the fractional Mikusinski operator is presented, providing an alternative method of treating the integral equation of Abel’s type.


Author(s):  
Rong Zhang ◽  
Ling Li

In this paper, we are concerned with the positive continuous entire solutions of the Wolff-type integral system \begin{equation*} \left\{ \begin{array}{ll} &u(x) =C_{1}(x)W_{\beta,\gamma} (v^{-q})(x), \\[3mm] &v(x) =C_{2}(x)W_{\beta,\gamma} (u^{-p})(x), \end{array} \right. \end{equation*} where $n\geq1$, $\min\{p,q\}>0$, $\gamma>1$, $\beta>0$ and $\beta\gamma\neq n$. In addition, $C_{i}(x) \ (i=1,2)$ are some double bounded functions. If $\beta\gamma\in (0,n)$, the Serrin-type condition is critical for existence of the positive solutions for some double bounded functions $C_{i}(x)$ $(i=1,2)$. Such an integral equation system is related to the study of the $\gamma$-Laplace system and $k$-Hessian system with negative exponents. Estimated by the integral of the Wolff type potential, we obtain the asymptotic rates and the integrability of positive solutions, and studied whether the radial solutions exist.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Kelong Cheng ◽  
Chunxiang Guo

Some linear and nonlinear Gamidov type integral inequalities in two variables are established, which can give the explicit bounds on the solutions to a class of Volterra-Fredholm integral equations. Some examples of application are presented to show boundedness and uniqueness of solutions of a Volterra-Fredholm type integral equation.


1989 ◽  
Vol 40 (4) ◽  
pp. 438-442 ◽  
Author(s):  
S. Ashirov ◽  
Ya. D. Mamedov

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 819
Author(s):  
Manish Kumar Bansal ◽  
Devendra Kumar ◽  
Jagdev Singh ◽  
Kottakkaran Sooppy Nisar

The main aim of this article is to study the Fredholm-type integral equation involving the incomplete H-function (IHF) and incomplete H-function in the kernel. Firstly, we solve an integral equation associated with the IHF with the aid of the theory of fractional calculus and Mellin transform. Next, we examine an integral equation pertaining to the incomplete H-function with the help of theory of fractional calculus and Mellin transform. Further, we indicate some known results by specializing the parameters of IHF and incomplete H-function. The results computed in this article are very general in nature and capable of giving many new and known results connected with integral equations and their solutions hitherto scattered in the literature. The derived results are very useful in solving various real world problems.


Sign in / Sign up

Export Citation Format

Share Document