Large-Scale Stochasticity in Hamiltonian Systems

2020 ◽  
pp. 446-461
Author(s):  
D. F. Escande
2019 ◽  
Vol 5 (4) ◽  
pp. eaav2372 ◽  
Author(s):  
Hayato Goto ◽  
Kosuke Tatsumura ◽  
Alexander R. Dixon

Combinatorial optimization problems are ubiquitous but difficult to solve. Hardware devices for these problems have recently been developed by various approaches, including quantum computers. Inspired by recently proposed quantum adiabatic optimization using a nonlinear oscillator network, we propose a new optimization algorithm simulating adiabatic evolutions of classical nonlinear Hamiltonian systems exhibiting bifurcation phenomena, which we call simulated bifurcation (SB). SB is based on adiabatic and chaotic (ergodic) evolutions of nonlinear Hamiltonian systems. SB is also suitable for parallel computing because of its simultaneous updating. Implementing SB with a field-programmable gate array, we demonstrate that the SB machine can obtain good approximate solutions of an all-to-all connected 2000-node MAX-CUT problem in 0.5 ms, which is about 10 times faster than a state-of-the-art laser-based machine called a coherent Ising machine. SB will accelerate large-scale combinatorial optimization harnessing digital computer technologies and also offer a new application of computational and mathematical physics.


1986 ◽  
Vol 39 (3) ◽  
pp. 331 ◽  
Author(s):  
B Eckhardt ◽  
JA Louw ◽  
W-H Steeb

We review two criteria which have been used to predict the onset of large scale stochasticity in Hamiltonian systems. We show that one of them, due to Toda and based on a local stability analysis of the equations of motion, is inconclusive. An approach based on the local Riemannian curvature K of trajectories correctly predicts chaos if K < 0 everywhere, but�no further conclusions can be drawn. New (counter-)examples are provided.


1996 ◽  
Vol 06 (11) ◽  
pp. 1997-2013 ◽  
Author(s):  
HARRY DANKOWICZ

Perturbations of completely integrable Hamiltonian systems with three or more degrees of freedom are studied. In particular, the unperturbed systems are assumed to be separable into a product of simple oscillator-type systems and a system containing homo- or heteroclinic connections consisting of stable and unstable manifolds of saddle points. Under a perturbation, the manifolds persist but separate and may no longer intersect. In this paper we show how, with proper choices for initial conditions, one may solve the variational equations to obtain analytical expressions for orbits on the perturbed manifolds in the form of expansions in the small parameter characterizing the perturbation. The derivation also shows how the distance between the manifolds can be uniquely defined, and thus provides an alternative to the traditional higher dimensional Melnikov method. It is finally argued that the approximate knowledge of the shape and position of the perturbed manifolds could be utilized for the study of large-scale phase-space motions, such as those associated with Arnold diffusion. The theory is further illuminated in two example problems.


2002 ◽  
Vol 14 (8) ◽  
pp. 1179-1191 ◽  
Author(s):  
G. Voyatzis ◽  
E. Meletlidou ◽  
S. Ichtiaroglou

Author(s):  
Qing Hui ◽  
Jinglai Shen ◽  
Wei Qiao

Security is a critical issue in modern power system operation. With the aid of analytic tools for large-scale and hybrid systems, this paper proposes two new safety verification methods for power systems. The first method is based on barrier certificates and passivity. This method provides a general safety verification framework for power systems with the port-Hamiltonian structure. The energy shaping technique is also exploited to attain safety conditions for controlled port-Hamiltonian systems. The second method, based on positive invariance, yields exact safety verification for power systems based on linearized models, particularly linear Hamiltonian systems. Decidability of exact safety verification is established via algebraic and positive invariance approaches; other analytic and numerical issues are addressed from the positive invariance perspective.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document