Slip line theory extended to unsaturated soils and applied to the retaining wall—unsaturated soil interaction problem

Author(s):  
T. Vo ◽  
A.R. Russell
2012 ◽  
Vol 170-173 ◽  
pp. 847-852
Author(s):  
Peng Ming Jiang ◽  
Zhong Lei Yan ◽  
Peng Li

As the complexity of unsaturated soil theory, and it must have a long test period when we study the unsaturated soils, so the conventional design analysis software does not provide such analysis, so we can imagine that such a slope stability analysis does not accurately reflect the actual state of the slope. Based on the known soil moisture content,this paper use the soil water characteristic curve and strength theory of unsaturated soil to calculate the strength reduction parameters of soil which can calculate the stability of the soil slope when using the common calculation method. It is noticeable that this method can be extended and applied if we establish regional databases for this simple method, and these databases can improve the accuracy of the calculation of slope stability.


Author(s):  
Shaoyang Dong ◽  
Yuan Guo ◽  
Xiong (Bill) Yu

Hydraulic conductivity and soil-water retention are two critical soil properties describing the fluid flow in unsaturated soils. Existing experimental procedures tend to be time consuming and labor intensive. This paper describes a heuristic approach that combines a limited number of experimental measurements with a computational model with random finite element to significantly accelerate the process. A microstructure-based model is established to describe unsaturated soils with distribution of phases based on their respective volumetric contents. The model is converted into a finite element model, in which the intrinsic hydraulic properties of each phase (soil particle, water, and air) are applied based on the microscopic structures. The bulk hydraulic properties are then determined based on discharge rate using Darcy’s law. The intrinsic permeability of each phase of soil is first calibrated from soil measured under dry and saturated conditions, which is then used to predict the hydraulic conductivities at different extents of saturation. The results match the experimental data closely. Mualem’s equation is applied to fit the pore size parameter based on the hydraulic conductivity. From these, the soil-water characteristic curve is predicted from van Genuchten’s equation. The simulation results are compared with the experimental results from documented studies, and excellent agreements were observed. Overall, this study provides a new modeling-based approach to predict the hydraulic conductivity function and soil-water characteristic curve of unsaturated soils based on measurement at complete dry or completely saturated conditions. An efficient way to measure these critical unsaturated soil properties will be of benefit in introducing unsaturated soil mechanics into engineering practice.


Author(s):  
Thomasina V. Ball ◽  
Neil J. Balmforth ◽  
Ian J. Hewitt

We study the indentation of a rigid object into a layer of a cohesive or non-cohesive plastic material. Existing approaches to this problem using slip-line theory assume that the penetration depth is relatively small, employing perturbation theory about a flat surface. Here, we use two alternative approaches to account for large penetration depths, and for the consequent spreading and uplift of the surrounding material. For a viscoplastic fluid, which reduces to an ideal plastic under the limit of vanishing viscosity, we adopt a viscoplastic version of lubrication theory. For a Mohr–Coulomb material, we adopt an extension of slip-line theory between two parallel plates to account for arbitrary indenter shapes. We compare the theoretical predictions of penetration and spreading with experiments in which a flat plate, circular cylinder or sphere are indented into layers of Carbopol or glass spheres with successively higher loads. We find reasonable agreement between theory and experiment, though with some discrepancies that are discussed. There is a clear layer-depth dependence of the indentation and uplift for the viscoplastic material. For a cylinder indented into a Mohr–Coulomb material, there is a much weaker dependence on layer depth.


2009 ◽  
Vol 46 (5) ◽  
pp. 536-552 ◽  
Author(s):  
Xiong Zhang ◽  
Robert L. Lytton

The traditional state-surface approach to the study of unsaturated soil behavior is becoming much less popular these days, as it uses unique constitutive surfaces to represent unsaturated soil behavior. This approach is essentially a nonlinear elastic formation and cannot be used to explain complex stress-path dependency for unsaturated soils. In this paper, a modified state-surface approach (MSSA) is proposed to represent unsaturated soil behavior under isotropic stress conditions in which a conventional void-ratio state surface is considered to be made up of an elastic surface and a plastic hardening surface. The plastic hardening surface remains stationary at all times, whereas the elastic surface remains unchanged when the soil experiences elastic deformation and moves downward when there is plastic hardening occurrence. Using the MSSA, the loading–collapse (LC) and the suction increase (SI) yield curves in the Barcelona basic model (BBM) are derived. The prediction of three typical cases of soils under isotropic conditions and experimental results using the proposed approach confirmed its feasibility, simplicity, and potential for the study of unsaturated soil behavior.


Sign in / Sign up

Export Citation Format

Share Document