Physiological Properties and Morphological Characteristics of Cutaneous and Mucosal Mechanical Nociceptive Neurons With A-δ Peripheral Axons in the Trigeminal Ganglia of Crotaline Snakes

Author(s):  
Yun-Fei Liang ◽  
Shin-Ichi Terashima
2020 ◽  
Vol 21 (8) ◽  
pp. 2938
Author(s):  
Timea Aczél ◽  
Angéla Kecskés ◽  
József Kun ◽  
Kálmán Szenthe ◽  
Ferenc Bánáti ◽  
...  

A large percentage of primary sensory neurons in the trigeminal ganglia (TG) contain neuropeptides such as tachykinins or calcitonin gene-related peptide. Neuropeptides released from the central terminals of primary afferents sensitize the secondary nociceptive neurons in the trigeminal nucleus caudalis (TNC), but also activate glial cells contributing to neuroinflammation and consequent sensitization in chronic orofacial pain and migraine. In the present study, we investigated the newest member of the tachykinin family, hemokinin-1 (HK-1) encoded by the Tac4 gene in the trigeminal system. HK-1 had been shown to participate in inflammation and hyperalgesia in various models, but its role has not been investigated in orofacial pain or headache. In the complete Freund’s adjuvant (CFA)-induced inflammatory orofacial pain model, we showed that Tac4 expression increased in the TG in response to inflammation. Duration-dependent Tac4 upregulation was associated with the extent of the facial allodynia. Tac4 was detected in both TG neurons and satellite glial cells (SGC) by the ultrasensitive RNAscope in situ hybridization. We also compared gene expression changes of selected neuronal and glial sensitization and neuroinflammation markers between wild-type and Tac4-deficient (Tac4-/-) mice. Expression of the SGC/astrocyte marker in the TG and TNC was significantly lower in intact and saline/CFA-treated Tac4-/- mice. The procedural stress-related increase of the SGC/astrocyte marker was also strongly attenuated in Tac4-/- mice. Analysis of TG samples with a mouse neuroinflammation panel of 770 genes revealed that regulation of microglia and cytotoxic cell-related genes were significantly different in saline-treated Tac4-/- mice compared to their wild-types. It is concluded that HK-1 may participate in neuron-glia interactions both under physiological and inflammatory conditions and mediate pain in the trigeminal system.


genesis ◽  
2004 ◽  
Vol 38 (3) ◽  
pp. 122-129 ◽  
Author(s):  
Nitin Agarwal ◽  
Stefan Offermanns ◽  
Rohini Kuner

2015 ◽  
Vol 113 (7) ◽  
pp. 2653-2665 ◽  
Author(s):  
Luigi Sforna ◽  
Maria Cristina D'Adamo ◽  
Ilenio Servettini ◽  
Luca Guglielmi ◽  
Mauro Pessia ◽  
...  

Trigeminal ganglion (TG) neurons are functionally and morphologically heterogeneous, and the molecular basis of this heterogeneity is still not fully understood. Here we describe experiments showing that a subpopulation of neurons expresses a delayed-rectifying K+ current ( IDRK) with a characteristically high (nanomolar) sensitivity to the dihydroquinoline CP339,818 (CP). Although submicromolar CP has previously been shown to selectively block Kv1.3 and Kv1.4 channels, the CP-sensitive IDRK found in TG neurons could not be associated with either of these two K+ channels. It could neither be associated with Kv2.1 channels homomeric or heteromerically associated with the Kv9.2, Kv9.3, or Kv6.4 subunits, whose block by CP, tested using two-electrode voltage-clamp recordings from Xenopus oocytes, resulted in the low micromolar range, nor to the Kv7 subfamily, given the lack of blocking efficacy of 3 μM XE991. Within the group of multiple-firing neurons considered in this study, the CP-sensitive IDRK was preferentially expressed in a subpopulation showing several nociceptive markers, such as small membrane capacitance, sensitivity to capsaicin, and slow afterhyperpolarization (AHP); in these neurons the CP-sensitive IDRK controls the membrane resting potential, the firing frequency, and the AHP duration. A biophysical study of the CP-sensitive IDRK indicated the presence of two kinetically distinct components: a fast deactivating component having a relatively depolarized steady-state inactivation ( IDRKf) and a slow deactivating component with a more hyperpolarized V1/2 for steady-state inactivation ( IDRKs).


1994 ◽  
Vol 179 (1-2) ◽  
pp. 33-36 ◽  
Author(s):  
Shin-ichi Terashima ◽  
Yun-Fei Liang

2017 ◽  
Vol 23 (2) ◽  
pp. 190-193 ◽  
Author(s):  
Mei-Qi Zeng ◽  
Jun-Fei Niu ◽  
Ping Luan ◽  
Ying Ying ◽  
Rui-Ping Pang ◽  
...  

2006 ◽  
Vol 3 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Qiu Zhi-Qi ◽  
Cao Li-Xiang ◽  
Tan Hong-Ming ◽  
Zhou Shi-Ning

AbstractFifty-eight actinomycetes were isolated from surface-sterilized tomato (Lycopersicon esculentum) roots and 43 isolates were screened for herbicidal activities. Isolate S5 was found to have potent herbicidal activity against germination of wheat (Triticum aestivum L.), mung bean (Phaseolus radiatus L.) and grass (Paspalum notatum and Cynodon dactylon) seeds. But the metabolites of isolate S5 showed no influence on the growth of wheat seedlings. The S5 strain was identified as Streptomyces lavendulae var. glaucescens based on its morphological characteristics and physiological properties. The highest herbicidal activity was observed when 2% inocula were applied into S medium (containing 1% glucose, 0.3% beef extract and pH 7.0) and incubated at 25°C on a rotary shaker (160 rpm).


Sign in / Sign up

Export Citation Format

Share Document