endophytic streptomyces
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 33)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Lalitha Cheepurupalli ◽  
Aathithya Diaz ◽  
Adithya Conjeevaram Gopal ◽  
Sudarshan Singh Rathore ◽  
Vigneshwar Ramakrishnan ◽  
...  

2021 ◽  
Author(s):  
Veilumuthu P ◽  
Nagarajan T ◽  
Sasikumar S ◽  
Siva R ◽  
J Godwin Christopher

Abstract Streptomyces species is one among the dominant group of bacteria in the family Actinobacteria with a rich repertoire of secondary metabolites. Secondary metabolites with antimicrobial activity and plant growth promotor have been isolated from various Streptomyces sp. Here in this investigation, we present the draft genome of a new species, Streptomyces sp. VITGV156 isolated from healthy tomato plant (Lycopersicon esculentum) which has some rare antimicrobial secondary metabolites, like coelichelin, fluostatins, vicenistatin, nystatin, sipanmycin, and informatipeptin. The genome is 8.18 Mb in size with 6,259 protein coding genes. The average GC content of the genome is 72.61 %. Preliminary analysis with antiSMASH 6.0 revealed the presence of 29 biosynthetic gene clusters for the synthesis of potential secondary metabolites. These includes 4 NRPS (non – ribosomal peptide synthetase), 7 PKS (Polyketide Synthases), 2 RiPP (Ribosomally synthesized and post-translationally modified peptides) clusters. When we look into genes associated with secondary metabolites, 406 genes are present which includes 184 genes for cofactor and vitamins, 72 genes for terpenoids and polyketides, 70 genes for xenobiotics and 80 genes for other metabolites are present. Comparative genome analysis of VITGV156 with its closest neighbor Streptomyces luteus strain TRM45540 revealed ANI 91.22% and dDDH value 44.00%.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 969
Author(s):  
Mohd Shukri Baba ◽  
Noraziah Mohamad Zin ◽  
Siti Junaidah Ahmad ◽  
Noor Wini Mazlan ◽  
Syarul Nataqain Baharum ◽  
...  

Streptomyces sp. has been known to be a major antibiotic producer since the 1940s. As the number of cases related to resistance pathogens infection increases yearly, discovering the biosynthesis pathways of antibiotic has become important. In this study, we present the streamline of a project report summary; the genome data and metabolome data of newly isolated Streptomyces SUK 48 strain are also analyzed. The antibacterial activity of its crude extract is also determined. To obtain genome data, the genomic DNA of SUK 48 was extracted using a commercial kit (Promega) and sent for sequencing (Pac Biosciences technology platform, Menlo Park, CA, USA). The raw data were assembled and polished using Hierarchical Genome Assembly Process 4.0 (HGAP 4.0). The assembled data were structurally predicted using tRNAscan-SE and rnammer. Then, the data were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) database and antiSMASH analysis. Meanwhile, the metabolite profile of SUK 48 was determined using liquid chromatography-mass spectrophotometry (LC-MS) for both negative and positive modes. The results showed that the presence of kanamycin and gentamicin, as well as the other 11 antibiotics. Nevertheless, the biosynthesis pathways of aurantioclavine were also found. The cytotoxicity activity showed IC50 value was at 0.35 ± 1.35 mg/mL on the cell viability of HEK 293. In conclusion, Streptomyces sp. SUK 48 has proven to be a non-toxic antibiotic producer such as auranticlavine and gentamicin.


mBio ◽  
2021 ◽  
Author(s):  
Yan Gao ◽  
Qing Ning ◽  
Yuanzhu Yang ◽  
Ying Liu ◽  
Shuqi Niu ◽  
...  

Under disease stress, activation of defense response in plants often comes with the cost of a reduction in growth and yield, which is referred as the growth-defense trade-off. The microorganisms which can be recruited by plants to mitigate the growth-defense trade-off are of great value in crop breeding.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3517
Author(s):  
Reyhaneh Armin ◽  
Sebastian Zühlke ◽  
Gisela Grunewaldt-Stöcker ◽  
Felix Mahnkopp-Dirks ◽  
Souvik Kusari

Apple Replant Disease (ARD) is a significant problem in apple orchards that causes root tissue damage, stunted plant growth, and decline in fruit quality, size, and overall yield. Dysbiosis of apple root-associated microbiome and selective richness of Streptomyces species in the rhizosphere typically concurs root impairment associated with ARD. However, possible roles of Streptomyces secondary metabolites within these observations remain unstudied. Therefore, we employed the One Strain Many Compounds (OSMAC) approach coupled to high-performance liquid chromatography-high-resolution tandem mass spectrometry (HPLC-HRMSn) to evaluate the chemical ecology of an apple root-associated Streptomycesciscaucasicus strain GS2, temporally over 14 days. The chemical OSMAC approach comprised cultivation media alterations using six different media compositions, which led to the biosynthesis of the iron-chelated siderophores, ferrioxamines. The biological OSMAC approach was concomitantly applied by dual-culture cultivation for microorganismal interactions with an endophytic Streptomyces pulveraceus strain ES16 and the pathogen Cylindrocarpon olidum. This led to the modulation of ferrioxamines produced and further triggered biosynthesis of the unchelated siderophores, desferrioxamines. The structures of the compounds were elucidated using HRMSn and by comparison with the literature. We evaluated the dynamics of siderophore production under the combined influence of chemical and biological OSMAC triggers, temporally over 3, 7, and 14 days, to discern the strain’s siderophore-mediated chemical ecology. We discuss our results based on the plausible chemical implications of S. ciscaucasicus strain GS2 in the rhizosphere.


Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106768
Author(s):  
Siti Junaidah Ahmad ◽  
Noraziah Mohamad Zin

Sign in / Sign up

Export Citation Format

Share Document