Energy-reliability tradeoff analysis for multipurpose reservoir operation using LP-SDP

2020 ◽  
pp. 827-835
Author(s):  
Wang Jinwen ◽  
Zhang Yongchuan ◽  
Yuan Xiaohui ◽  
Zhang Youquan
2012 ◽  
Vol 13 (1) ◽  
pp. 270-283 ◽  
Author(s):  
Yiping Wu ◽  
Ji Chen

Abstract This paper develops an operation-based numerical scheme for simulating storage in and outflow from a multiyear and multipurpose reservoir at a daily time step in order to enhance the simulation capacity of macroscale land surface hydrologic models. In the new scheme, besides the purpose of flood control, three other operational purposes—hydropower generation, downstream water supply, and water impoundment—are considered, and accordingly three related decision-based parameters are introduced. The new scheme is then integrated into the Soil and Water Assessment Tool (SWAT), which is a macroscale hydrologic model. The observed water storage and outflow from a multiyear and multipurpose reservoir, the Xinfengjiang Reservoir in southern China, are used to examine the new scheme. Compared with two other reservoir operation schemes—namely, a modified existing reservoir operation scheme in SWAT (i.e., the target release scheme) and a multilinear regression scheme—the new scheme can give a consistently better simulation of the reservoir storage and outflow. Furthermore, through a sensitivity analysis, this study shows that the three decision-based parameters can represent the significance of each operational purpose in different periods and the new scheme can advance the flexibility and capability of the simulation of the reservoir storage and outflow.


1984 ◽  
Vol 69 (1-4) ◽  
pp. 1-14 ◽  
Author(s):  
Miguel A. Mariño ◽  
Behzad Mohammadi

2018 ◽  
Vol 7 (3.12) ◽  
pp. 594
Author(s):  
K Sasireka ◽  
T R Neelakantan ◽  
S Suriyanarayanan

Reservoir operation plays an important role in the economic development of a region. The storage reservoirs are not only useful for supplying water for municipal and irrigation purpose, but also act as a protection barrier form flood, and the stored water can be used for generation of electricity power as well. To meet the objectives for which the reservoir was planned, it is vital to formulate guidelines for the operation of reservoir. This can be achieved by systematic operation of the system, and by the use of systematic and simplified rule curve for the operation of reservoir. Hedging rules are popular in drinking and irrigation water supply. Application of hedging is now gaining focus for hydropower power reservoir operation. In the present study, attempt has been made to formulate a new operating rule for multipurpose reservoir using hedging rules and the developed model was applied to a case study of Bargi reservoir in the Narmada basin in India. In order to increase the reliability of water supply for municipal, irrigation and average annual power production, the new operating rule has been developed using Standard Operation Policy (SOP) and hedging rule according to the priority of release for different purposes. The hedging rule based simulation model satisfies 97.5% of municipal water supply which is more than 8.25% of the present operational policy. The spill of the reservoir is decreased by 57 % compared to present policy. The performances of different hedging rules were compared with that of a new standard operating policies and the superiority of the hedging rules are discussed in this paper. 


2013 ◽  
Vol 27 (11) ◽  
pp. 3929-3944 ◽  
Author(s):  
Rafael Pedrollo de Paes ◽  
João Luiz Boccia Brandão

2016 ◽  
Vol 52 (11) ◽  
pp. 8630-8649 ◽  
Author(s):  
Slobodan P. Simonovic ◽  
R. Arunkumar

2022 ◽  
Vol 15 (2) ◽  
Author(s):  
Mahdi Sedighkia ◽  
Bithin Datta ◽  
Asghar Abdoli

Abstract  The present study proposes a multipurpose reservoir operation optimization for mitigating impact of rice fields’ contamination on the downstream river ecosystem. The developed model was applied in the Tajan River basin in Mazandaran Province, Iran, in which the rice is the main crop. We used soil and water assessment tool (SWAT) to simulate inflow of the reservoir and nitrate load at downstream river reach. Nash–Sutcliffe model efficiency coefficient was used to measure the robustness of SWAT. NSE indicated that SWAT is acceptable to simulate nitrate load of the rice fields. The results of SWAT was applied in the structure of a multipurpose reservoir operation optimization in which three metaheuristic algorithms including differential evolution algorithm, particle swarm optimization and biogeography-based algorithm were utilized in the optimization process. Reliability index, mean absolute error and failure index were used to measure the robustness of the optimization algorithms. Fuzzy Technique for Order of Preference by Similarity to Ideal Solution was utilized to select the best algorithm. Based on results, particle swarm optimization is the best method to optimize reservoir operation in the case study. The reliability index and mean absolute error for water supply are 0.6 and 5 million cubic meters, respectively. Furthermore, the failure index of contamination is 0.027. Hence, it could be concluded that the proposed optimization system is reliable and robust to mitigate losses and nitrate contamination simultaneously. However, its performance is not perfect for minimizing impact of contamination in all the simulated months.


Sign in / Sign up

Export Citation Format

Share Document