Technologies to Inhibit Coal Fires

2021 ◽  
pp. 45-68
Author(s):  
Jun Deng ◽  
Yang Xiao ◽  
Qing-Wei Li ◽  
Hao Zhang
Keyword(s):  
2018 ◽  
Vol 141 ◽  
pp. 333-338 ◽  
Author(s):  
Jun Li ◽  
Pengbin Fu ◽  
Qiren Zhu ◽  
Yandong Mao ◽  
Cheng Yang

Author(s):  
B. Chen ◽  
M. Franceschi ◽  
Y. Wang ◽  
X. Duan ◽  
X. Jin ◽  
...  

Abstract —Coal fires are a phenomenon that can be observed worldwide in areas where rocks containing coal seams are exposed and can pose major environmental threats. A coal fire can begin through spontaneous combustion when coals are exposed to dry and oxygen-rich near-surface conditions. Burning, depending on the temperature of heating, causes baking or even melting of the surrounding rocks and the formation of different types of combustion metamorphic rocks. In Northwestern China, coal fire occurrences are concentrated at the edges of the sedimentary basins or at the margins of orogenic belts, where coalrich units were exposed owing to the Indo-Eurasian collision. On the northern margin of the Tianshan range, evidence of coal fires is widespread in the Jurassic sedimentary units containing coal seams which outcrop along the Central Asian Orogenic Belt. In some cases, coal fires are active and can be linked to ongoing mining activity, but outcrops of combustion metamorphic rocks not associated with fires are also found and are indicative of past burning events. We examine combustion metamorphic rocks outcropping in the Toutunhe River valley (Liuhuangou area, Xinjiang, Northwestern China). Combustion metamorphic rocks in the study area were mapped and classified according to their morphological and mineralogical characteristics. Outcrops are exposed at various heights on the valley flanks, which are characterized by the presence of multiple levels of fluvial terraces. These terraces are indicative of the phases of erosion and deposition of the Toutunhe River and testify to tectonic uplift. The investigation of the stratigraphic and crosscutting relationship of combustion metamorphic rocks with terrace deposits and apatite fissiontrack dating made it possible to determine that at least four phases of coal fire activity occurred from late Miocene to Quaternary. The first and oldest burning phase dates back to 10 ± 1.3 Ma and terminated prior to 2–3 Ma; the second was active before ~550 ka; the third had terminated by ~140 ka; the fourth began later than ~5.7 ka. The relationships between combustion metamorphic rocks and fluvial terraces further suggest that coal fire ignition/extinction in the area since the Miocene have been linked to the interplay between the uplift of the Central Asian Orogenic Belt and the phases of fluvial erosion and deposition in interglacial periods.


2021 ◽  
Author(s):  
Vamshi Karanam ◽  
Shagun Garg ◽  
Mahdi Motagh ◽  
Kamal Jain

<p>Coal fires, land subsidence, roof collapse, and other life-threatening risks are a predictable phenomenon for the mineworkers and the neighbourhood population in coalfields. Jharia Coalfields in India are suffered heavily from land subsidence and coal fires for over a century. In addition to the loss of precious coal reserves, this has led to severe damage to the environment, livelihood, transportation, and precious lives.</p><p>Such incidents highlight the dire need for a well-defined methodology for risk analysis for the coalfield. In this study, we regenerated a Land Use Land Cover map prepared using Indian Remote Sensing satellite imagery and ground survey. Persistent Scatterer Interferometry analysis using Sentinel -1 images was carried out to study the land subsidence phenomenon between Nov 2018 and Apr 2019. For the same study period, coal fire zones were identified with Landsat – 8 thermal band imagery. Integration of coal fire maps, subsidence velocity maps, and land use maps was further implemented in a geographical information background environment to extract the high-risk zones. These high-risk areas include residential areas, railways, and mining sites, requiring immediate attention.</p><p>The results show that the coal mines are affected by subsidence of up to 20 cm/yr and a temperature anomaly of nearly 20<sup>o</sup>C is noticed. A high-risk zone of almost 18 sq. km. was demarcated with Kusunda, Gaslitand, and West Mudidih collieries being the most critically affected zones in the Coal mines. The study demonstrates the potential to combine data from multiple satellite sensors to build a safer ecosystem around the coal mines.  </p>


2017 ◽  
Vol 145 ◽  
pp. 124-132 ◽  
Author(s):  
Zhenlu Shao ◽  
Deming Wang ◽  
Yanming Wang ◽  
Xiaoxing Zhong ◽  
Yunxiang Zhang ◽  
...  

2018 ◽  
pp. 225-250
Author(s):  
S. Taku Ide ◽  
Claudia Kuenzer ◽  
Franklin M. Orr
Keyword(s):  

2015 ◽  
Vol 204 (2) ◽  
pp. 1316-1331 ◽  
Author(s):  
Zhenlu Shao ◽  
Deming Wang ◽  
Yanming Wang ◽  
Xiaoxing Zhong ◽  
Xiaofei Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document