The Microbiota in Symbiotic Entanglement with Human Metabolism

2021 ◽  
pp. 225-274
Author(s):  
Brian J. Fertig
Keyword(s):  
1979 ◽  
Vol 7 (6) ◽  
pp. 1330-1331
Author(s):  
E. D. WILLS

2015 ◽  
pp. 21-24
Author(s):  
Naomi Brooks ◽  
Stuart Galloway
Keyword(s):  

2020 ◽  
Vol 17 (1) ◽  
pp. 63-80
Author(s):  
Athina Chasapi ◽  
Kostas Balampanis ◽  
Eleni Kourea ◽  
Fotios Kalfaretzos ◽  
Vaia Lambadiari ◽  
...  

Background: Estrogen receptor β (ERβ) plays an important role in human metabolism and some of its metabolic actions are mediated by a positive “cross-talk” with Nuclear Factor of Activated T cells (NFAT) and the key metabolic transcriptional coregulator Transcriptional Intermediary Factor 2 (TIF2). Introduction: Our study is an “in situ” morphological evaluation of the communication between ERβ, NFAT and TIF2 in morbid obesity. Potential correlations with clinicopathological parameters and with the presence of diabetes and non-alcoholic fatty liver disease (NAFLD) were also explored. The aim of the present study was to determine the role of ERβ and NFAT in the underlying pathophysiology of obesity and related comorbidities. We have investigated the expression of specific proteins using immunochemistry methodologies. Methods: Our population consists of 50 morbidly obese patients undergoing planned bariatric surgery, during which biopsies were taken from visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), skeletal muscle (SM), extramyocellular adipose tissue (EMAT) and liver and the differential protein expression was evaluated by immunohistochemistry. Results: We demonstrated an extensive intra- and inter-tissue co-expression network, which confirms the tissue-specific and integral role of each one of the investigated proteins in morbid obesity. Moreover, a beneficial role of ERβ and NFATc1 against NAFLD is implicated, whereas the distinct roles of TIF2 still remain an enigma. Conclusions: We believe that our findings will shed light on the complex underlying mechanisms and that the investigated biomarkers could represent future targets for the prevention and therapy of obesity and its comorbidities.


2021 ◽  
pp. 100330
Author(s):  
Mirjam de Bruin-Hoegée ◽  
Djarah Kleiweg ◽  
Daan Noort ◽  
Arian C. Van Asten
Keyword(s):  

2021 ◽  
Vol 343 ◽  
pp. 11-20
Author(s):  
Benedikt Ringbeck ◽  
Daniel Bury ◽  
Alexandra Gotthardt ◽  
Heiko Hayen ◽  
Rainer Otter ◽  
...  

Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
A. L. Cunningham ◽  
J. W. Stephens ◽  
D. A. Harris

AbstractA strong and expanding evidence base supports the influence of gut microbiota in human metabolism. Altered glucose homeostasis is associated with altered gut microbiota, and is clearly associated with the development of type 2 diabetes mellitus (T2DM) and associated complications. Understanding the causal association between gut microbiota and metabolic risk has the potential role of identifying susceptible individuals to allow early targeted intervention.


2021 ◽  
Vol 53 (1) ◽  
pp. 54-64
Author(s):  
Luca A. Lotta ◽  
◽  
Maik Pietzner ◽  
Isobel D. Stewart ◽  
Laura B. L. Wittemans ◽  
...  

GigaScience ◽  
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
T Cameron Waller ◽  
Jordan A Berg ◽  
Alexander Lex ◽  
Brian E Chapman ◽  
Jared Rutter

Abstract Background Metabolic networks represent all chemical reactions that occur between molecular metabolites in an organism’s cells. They offer biological context in which to integrate, analyze, and interpret omic measurements, but their large scale and extensive connectivity present unique challenges. While it is practical to simplify these networks by placing constraints on compartments and hubs, it is unclear how these simplifications alter the structure of metabolic networks and the interpretation of metabolomic experiments. Results We curated and adapted the latest systemic model of human metabolism and developed customizable tools to define metabolic networks with and without compartmentalization in subcellular organelles and with or without inclusion of prolific metabolite hubs. Compartmentalization made networks larger, less dense, and more modular, whereas hubs made networks larger, more dense, and less modular. When present, these hubs also dominated shortest paths in the network, yet their exclusion exposed the subtler prominence of other metabolites that are typically more relevant to metabolomic experiments. We applied the non-compartmental network without metabolite hubs in a retrospective, exploratory analysis of metabolomic measurements from 5 studies on human tissues. Network clusters identified individual reactions that might experience differential regulation between experimental conditions, several of which were not apparent in the original publications. Conclusions Exclusion of specific metabolite hubs exposes modularity in both compartmental and non-compartmental metabolic networks, improving detection of relevant clusters in omic measurements. Better computational detection of metabolic network clusters in large data sets has potential to identify differential regulation of individual genes, transcripts, and proteins.


Sign in / Sign up

Export Citation Format

Share Document