Selling Energy Projects

Author(s):  
Kaushik Bhattacharjee
Keyword(s):  
2011 ◽  
pp. 042811132534
Author(s):  
Rajendrani Mukhopadhyay
Keyword(s):  

2019 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Lauren K. D’Souza ◽  
William L. Ascher ◽  
Tanja Srebotnjak

Native American reservations are among the most economically disadvantaged regions in the United States; lacking access to economic and educational opportunities that are exacerbated by “energy insecurity” due to insufficient connectivity to the electric grid and power outages. Local renewable energy sources such as wind, solar, and biomass offer energy alternatives but their implementation encounters barriers such as lack of financing, infrastructure, and expertise, as well as divergent attitudes among tribal leaders. Biomass, in particular, could be a source of stable base-load power that is abundant and scalable in many rural communities. This case study examines the feasibility of a biomass energy plant on the Cocopah reservation in southwestern Arizona. It considers feedstock availability, cost and energy content, technology options, nameplate capacity, discount and interest rates, construction, operation and maintenance (O&M) costs, and alternative investment options. This study finds that at current electricity prices and based on typical costs for fuel, O&M over 30 years, none of the tested scenarios is presently cost-effective on a net present value (NPV) basis when compared with an alternative investment yielding annual returns of 3% or higher. The technology most likely to be economically viable and suitable for remote, rural contexts—a combustion stoker—resulted in a levelized costs of energy (LCOE) ranging from US$0.056 to 0.147/kWh. The most favorable scenario is a combustion stoker with an estimated NPV of US$4,791,243. The NPV of the corresponding alternative investment is US$7,123,380. However, if the tribes were able to secure a zero-interest loan to finance the plant’s installation cost, the project would be on par with the alternative investment. Even if this were the case, the scenario still relies on some of the most optimistic assumptions for the biomass-to-power plant and excludes abatement costs for air emissions. The study thus concludes that at present small-scale, biomass-to-energy projects require a mix of favorable market and local conditions as well as appropriate policy support to make biomass energy projects a cost-competitive source of stable, alternative energy for remote rural tribal communities that can provide greater tribal sovereignty and economic opportunities.


2020 ◽  
Vol 92 (3) ◽  
pp. 8-19
Author(s):  
O.V. Demina ◽  

The article assesses prospects of the Russian-Korean cooperation and analyzes risks and opportunities of the trilateral energy projects on the Korean Peninsula. The author noted that energy sector is the key area of bilateral cooperation between Russia and the Republic of Korea, but it’s mainly represented by the trade in primary energy resources. The study identified the export potential of Russian hydrocarbons to the market of the Republic of Korea. As for the DPRK, the paper shows that within bilateral relations geopolitical interests prevail over the economic ones. The small capacity of the DPRK's domestic market and the absence of fixation sources do not allow considering it as an independent full-fledged market for the Russian energy resources. The main goal of the energy strategy of Russia and the Russian Far East is increasing the volume of exports of the primary energy resources to the APR countries. Russian prospects for the new product niches in the energy markets of the Republic of Korea are associated with the implementation of trilateral energy projects among Russia, the DPRK and the Republic of Korea. It includes creation of the interstate power transmission lines and construction of a gas pipeline. All parties are interested in these projects. As for Russia, it is primarily the expansion of energy exports, including occupation of the commodity niches in new markets, and strengthening of the political role in the region. As for the Republic of Korea, these projects mean diversification of supplies and costs’ reduction of the import energy resources. And as for the DPRK, these projects imply an additional source of financing (as payment for transit), improvement of the country's energy infrastructure and reduction of the deficit of energy resources. Despite the prospects, the author determined that in the near future implementation of the projects is unlikely due to the unresolved transit risks.


2021 ◽  
Vol 13 (4) ◽  
pp. 2128
Author(s):  
Amollo Ambole ◽  
Kweku Koranteng ◽  
Peris Njoroge ◽  
Douglas Logedi Luhangala

Energy communities have received considerable attention in the Global North, especially in Europe, due to their potential for achieving sustainable energy transitions. In Sub-Saharan Africa (SSA), energy communities have received less attention partly due to the nascent energy systems in many emerging SSA states. In this paper, we argue that these nascent energy systems offer an opportunity to co-create energy communities that can tackle the energy access challenges faced by most SSA countries. To understand how such energy communities are realised in the sub-region, we undertake a systematic review of research on energy communities in 46 SSA countries. Our findings show that only a few energy projects exhibit the conventional characteristics of energy communities; In most of these projects, local communities are inadequately resourced to institute and manage their own projects. We thus look to stakeholder engagement approaches to propose co-design as a strategy for strengthening energy communities in SSA. We further embed our co-design proposal in energy democracy thinking to argue that energy communities can be a pathway towards equity and energy justice in SSA. We conclude that energy communities can indeed contribute to improving energy access in Africa, but they need an enabling policy environment to foster their growth and sustainability.


2021 ◽  
Vol 9 (8) ◽  
pp. 810
Author(s):  
Francisco X. Correia da Fonseca ◽  
Luís Amaral ◽  
Paulo Chainho

Ocean energy is a relevant source of clean renewable energy, and as it is still facing challenges related to its above grid-parity costs, tariffs intended to support in a structured and coherent way are of great relevance and potential impact. The logistics and marine operations required for installing and maintaining these systems are major cost drivers of marine renewable energy projects. Planning the logistics of marine energy projects is a highly complex and intertwined process, and to date, limited advances have been made in the development of decision support tools suitable for ocean energy farm design. The present paper describes the methodology of a novel, opensource, logistic and marine operation planning tool, integrated within DTOceanPlus suite of design tools, and responsible for producing logistic solutions comprised of optimal selections of vessels, port terminals, equipment, as well as operation plans, for ocean energy projects. Infrastructure selection logistic functions were developed to select vessels, ports, and equipment for specific projects. A statistical weather window model was developed to estimate operation delays due to weather. A vessel charter rate modeling approach, based on an in-house vessel database and industry experience, is described in detail. The overall operation assumptions and underlying operating principles of the statistical weather window model, maritime infrastructure selection algorithms, and cost modeling strategies are presented. Tests performed for a case study based a theoretical floating wave energy converter produced results in good agreement with reality.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Sonam Norbu ◽  
Benoit Couraud ◽  
Valentin Robu ◽  
Merlinda Andoni ◽  
David Flynn

Sign in / Sign up

Export Citation Format

Share Document