Electric End-use Energy Efficiency

Author(s):  
Clark W. Gellings
Keyword(s):  
2017 ◽  
Author(s):  
Eric Wilson ◽  
Craig Christensen ◽  
Scott Horowitz ◽  
Joseph Robertson ◽  
Jeff Maguire

Author(s):  
Priya Sreedharan ◽  
Alan H. Sanstad ◽  
Joe Bryson

Energy “sustainability” and energy supply have again emerged as central public policy issues and are at the intersection of the economic, environmental, and security challenges facing the nation and the world. The goal of significantly reducing greenhouse gas (GHG) emissions associated with energy production and consumption, while maintaining affordable and reliable energy supplies, is one of the most important issues. Among the strategies for achieving this goal, increasing the efficiency of energy consumption in buildings is being emphasized to a degree not seen since the 1970s. “End-use” efficiency is the core of the State of California’s landmark effort to reduce its GHG emissions, of other state and local climate-change initiatives, and is emphasized in emerging federal GHG abatement legislation. Both economic and engineering methods are used to analyze energy efficiency, but the two paradigms provide different perspectives on the market and technological factors that affect the diffusion of energy efficiency. These disparate perspectives influence what is considered the appropriate role and design of public policy for leveraging not just efficient end-use technology, but other sustainable energy technologies. We review the two approaches and their current roles in the GHG policy process by describing, for illustrative purposes, the U.S. Environmental Protection Agency’s assessment of energy efficiency in the American Clean Energy and Security Act of 2009 Discussion Draft. We highlight opportunities and needs for improved coordination between the engineering, economic and policy communities. Our view is that a better understanding of disciplinary differences and complementarities in perspectives and analytical methods between these communities will benefit the climate change policy process.


Author(s):  
Clark W. Gellings ◽  
Arshad Mansoor

The objectives of this paper are to examine the benefits of electric end-use energy efficiency as well as the potential cost to enhancing the current electric distribution system, to examine the quantifiable impact of electric end-use energy efficiency as an energy resource, to suggest critical technological advances that must be made to the current electric distribution system to enable greater use of electric end-use energy efficiency, and to summarize a proposed technology R&D initiative.


2015 ◽  
Vol 52 (6) ◽  
pp. 3-12 ◽  
Author(s):  
A. Zīgurs ◽  
U. Sarma

Abstract Discussions in Latvia are ongoing regarding the optimum solution to implementing Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC (Directive 2012/27/EU). Without a doubt, increased energy efficiency contributes significantly to energy supply security, competitive performance, increased quality of life, reduced energy dependence and greenhouse gas (GHG) emissions. However, Directive 2012/27/EU should be implemented with careful planning, evaluating every aspect of the process. This study analyses a scenario, where a significant fraction of target energy efficiency is achieved by obliging energy utilities to implement user-end energy efficiency measures. With implementation of this scheme towards energy end-use savings, user payments for energy should be reduced; on the other hand, these measures will require considerable investment. The energy efficiency obligation scheme stipulates that these investments must be paid by energy utilities; however, they will actually be covered by users, because the source of energy utilities’ income is user payments for energy. Thus, expenses on such measures will be included in energy prices and service tariffs. The authors analyse the ways to achieve a balance between user gains from energy end-use savings and increased energy prices and tariffs as a result of obligations imposed upon energy utilities. Similarly, the suitability of the current regulatory regime for effective implementation of Directive 2012/27/EU is analysed in the energy supply sectors, where supply tariffs are regulated.


Author(s):  
Mac Van Dat ◽  
Tran Ngoc Quang

This paper aims to determine energy use intensity (EUI) and the percentage of end-use energy consumption in hotel buildings in major cities of Vietnam, including Hanoi, Da Nang and Ho Chi Minh City (HCMC). Data from 32 hotels were gathered from the website on energy efficiency promotion of Ministry of Construction. The average EUI in the whole country was 151 kWh/m2.year, and the figures for Hanoi, Da Nang, and HCMC were 184; 71 and 212 kWh/m2.year, respectively. At the same time, the structure of end-use energy consumption was estimated, of which 54% for heating, ventilation and air conditioning (HVAC), 10% for lighting, 19% for plug equipment and 17% for lifts. Keywords: energy consumption; energy use intensity (EUI); end-use energy consumption.


2013 ◽  
Vol 04 (supp01) ◽  
pp. 1340004 ◽  
Author(s):  
HANNAH FÖRSTER ◽  
KATJA SCHUMACHER ◽  
ENRICA DE CIAN ◽  
MICHAEL HÜBLER ◽  
ILKKA KEPPO ◽  
...  

Energy efficiency and decarbonization are important elements of climate change mitigation. We draw on European mitigation scenarios from the EMF28 modeling exercise to decompose economy-wide and sectoral emissions into their main components. We utilize the Logarithmic Mean Divisia Index (LMDI) to gain insights into five effects: affluence, energy intensity, carbon intensity, conversion efficiency, and structural change. Economy-wide analysis suggests that energy efficiency improvements (including end-use efficiency of production and structural change of the economy) determine emission reductions short to medium term while decarbonization becomes more important in the long term. Sectoral analysis suggests that electricity generation holds the largest potential for decarbonization. Mitigation in the transport and energy-intensive sectors is limited by technology availability, forcing output and energy inputs to decline to meet the given mitigation pathways. We conclude that energy efficiency improvements could bridge the time until carbon-free technologies mature, while their quick development remains essential.


Author(s):  
Filomena Pietrapertosa ◽  
Marco Tancredi ◽  
Michele Giordano ◽  
Carmelina Cosmi ◽  
Monica Salvia

The European Union 2050 climate neutrality goal and the climate crisis require coordinated efforts to reduce energy consumption in all sectors, and mainly in buildings greatly affected by the increasing temperature, with relevant CO2 emissions due to inefficient end-use technologies. Moreover, the old building stock of most countries requires suited policies to support renovation programs aimed at improving energy performances and optimize energy uses. A toolbox was developed in the framework of the PrioritEE project to provide policy makers and technicians with a wide set of tools to support energy efficiency in Municipal Public Buildings. The toolbox, available for free, was tested in the partners’ communities, proving its effectiveness. The paper illustrates its application to the Potenza Municipality case study in which the online calculator DSTool (the core instrument of the toolbox) was utilized to select and prioritize the energy efficiency interventions in public buildings implementable in a three-year action plan in terms of costs, energy savings, CO2 emissions’ reduction and return on investments. The results highlight that improvements in the building envelopes (walls and roofs), heating and lighting and photovoltaic systems allow reducing CO2 emission approximately 644 t/year and saving about 2050 MWh/year with a total three-year investment of 1,728,823 EUR.


Sign in / Sign up

Export Citation Format

Share Document