Meso-mechanical assessment of composite materials based on the finite element method

2020 ◽  
pp. 212-216
Author(s):  
Cong Du ◽  
Pengfei Liu ◽  
Markus Oeser
2009 ◽  
Vol 424 ◽  
pp. 113-119 ◽  
Author(s):  
Jerome Muehlhause ◽  
Sven Gall ◽  
Sören Müller

Extrusion of composite materials can offer big advantages. In this work the manufacturing of a hybrid metal profile in a single production step was investigated. A porthole die was used, thus producing profiles with extrusion seams. Along the seams a material mix up was visible. The extrusion process was simulated with the Finite Element Method to investigate the material flow in die and welding chamber in order to understand the cause for the defects at the seams.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4449
Author(s):  
Miran Merhar

In composite materials, the use of failure criteria is necessary to determine the failure forces. Various failure criteria are known, from the simplest ones that compare individual stresses with the corresponding strength, to more complex ones that take into account the sign and direction of the stress, as well as mutual interactions of the acting stresses. This study investigates the application of the maximum stress, Tsai-Hill, Tsai-Wu, Puck, Hoffman and Hashin criteria to beech plywood made from a series of plies of differently oriented beech veneers. Specimens were cut from the manufactured boards at various angles and loaded by bending to failure. The mechanical properties of the beech veneer were also determined. The specimens were modelled using the finite element method with a composite modulus and considering the different failure criteria where the failure forces were calculated and compared with the measured values. It was found that the calculated forces based on all failure criteria were lower than those measured experimentally. The forces determined using the maximum stress criterion showed the best agreement between the calculated and measured forces.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 818 ◽  
Author(s):  
Sarah David Müzel ◽  
Eduardo Pires Bonhin ◽  
Nara Miranda Guimarães ◽  
Erick Siqueira Guidi

The use of composite materials in several sectors, such as aeronautics and automotive, has been gaining distinction in recent years. However, due to their high costs, as well as unique characteristics, consequences of their heterogeneity, they present challenging gaps to be studied. As a result, the finite element method has been used as a way to analyze composite materials subjected to the most distinctive situations. Therefore, this work aims to approach the modeling of composite materials, focusing on material properties, failure criteria, types of elements and main application sectors. From the modeling point of view, different levels of modeling—micro, meso and macro, are presented. Regarding properties, different mechanical characteristics, theories and constitutive relationships involved to model these materials are presented. The text also discusses the types of elements most commonly used to simulate composites, which are solids, peel, plate and cohesive, as well as the various failure criteria developed and used for the simulation of these materials. In addition, the present article lists the main industrial sectors in which composite material simulation is used, and their gains from it, including aeronautics, aerospace, automotive, naval, energy, civil, sports, manufacturing and even electronics.


2020 ◽  
pp. 108128652097245
Author(s):  
Da Cui ◽  
Daokui Li ◽  
Shiming Zhou ◽  
Anfeng Zhou ◽  
Xuan Zhou

The optimized design of composite adaptive structures puts forward higher requirements and challenges to the actual configuration of the structural section. In this paper, a trapezoidal laminate model of composite materials is established. Based on the classical laminates theory, the bending problem of trapezoidal laminates is solved by using the Kantorovich method and the principle of minimum potential energy. The analytic form of the solution is found to satisfy the Euler equation and displacement boundary conditions. Taking the wing of a jet transport aircraft as an example, the accuracy of the analytical solution is verified by the finite element method. The Differential Evolution algorithm is used to realize the multi-objective optimal design of the bending–twisting coupled trapezoidal laminates, and the hygrothermal stability of laminates is verified by the finite element method. Finally, based on the Monte Carlo method, the robustness analysis of the bending–twisting coupling effect of laminate is realized; meanwhile the feasibility and reliability of the design scheme are verified. The stress and strain functions at each point of the trapezoidal laminate can be further obtained by the analytical solution, making it more convenient to analyze the stresses and calculate the static forces of the trapezoidal laminate and its composite structures, which is of great significance to effectively improve the comprehensive mechanical properties of the cross-section structure of composite materials.


Sign in / Sign up

Export Citation Format

Share Document