Design and tuning of PID controller for an inherently unstable system

2021 ◽  
pp. 842-851
Author(s):  
P. Swarnkar ◽  
H. Goud
2013 ◽  
Vol 321-324 ◽  
pp. 819-823 ◽  
Author(s):  
Qi Dong Ma ◽  
Zhen Guo Sun ◽  
Jing Ran Wu ◽  
Wen Zeng Zhang

A nonlinear dynamic model of a miniature Six-Rotor is presented. A 4 channels PID controller is designed to operate the under actuated and dynamically unstable system with 6 inputs. Driving forces of 6 rotors are divided into four components such as throttle, roll, pitch and yaw. The control algorithm is simulated with Design Optimization Toolbox in Matlab. After observing the corresponding responses of Euler angles, the altitude and the driving force for each motor, the simulation results show good performance.


Sign in / Sign up

Export Citation Format

Share Document