The Stochastic Theory of Chromatography

2021 ◽  
pp. 51-74
Author(s):  
Francesco Dondi ◽  
Alberto Cavazzini ◽  
Maurizio Remelli
1963 ◽  
Vol 38 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Donald A. McQuarrie

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1329
Author(s):  
Lev Ryashko ◽  
Dmitri V. Alexandrov ◽  
Irina Bashkirtseva

A problem of the noise-induced generation and shifts of phantom attractors in nonlinear dynamical systems is considered. On the basis of the model describing interaction of the climate and vegetation we study the probabilistic mechanisms of noise-induced systematic shifts in global temperature both upward (“warming”) and downward (“freezing”). These shifts are associated with changes in the area of Earth covered by vegetation. The mathematical study of these noise-induced phenomena is performed within the framework of the stochastic theory of phantom attractors in slow-fast systems. We give a theoretical description of stochastic generation and shifts of phantom attractors based on the method of freezing a slow variable and averaging a fast one. The probabilistic mechanisms of oppositely directed shifts caused by additive and multiplicative noise are discussed.


Author(s):  
Roy Cerqueti ◽  
Eleonora Cutrini

AbstractThis paper deals with the theoretical analysis of the spatial concentration and localization of firms and employees over a set of regions. In particular, it provides a simple site-selection theoretical model to describe the probabilistic framework of the location patterns. The adopted quantitative tool is the stochastic theory of urns. The model moves from the empirical evidence of the deviation of the spatial location of companies from the uniform distribution and of employees from the distribution of firms. Factors leading to such deviations are taken into consideration. Specifically, we formalize a decision problem grounded on the economic attributes of the regions and also on the distribution of the existing firms and employees in the territory. To our purpose, the site-selection model is presented as a stepwise process.


1982 ◽  
Vol 17 (2) ◽  
pp. 65-73 ◽  
Author(s):  
Benzion Semionovich Fleishman

Sign in / Sign up

Export Citation Format

Share Document