Application of Thermal Spray Coatings for Protection against Erosion, Abrasion, and Corrosion in Hydropower Plants and Offshore Industry

2021 ◽  
pp. 243-283
Author(s):  
Jashanpreet Singh
Author(s):  
R. Ahmed ◽  
O. Ali ◽  
C. C. Berndt ◽  
A. Fardan

AbstractThe global thermal spray coatings market was valued at USD 10.1 billion in 2019 and is expected to grow at a compound annual growth rate of 3.9% from 2020 to 2027. Carbide coatings form an essential segment of this market and provide cost-effective and environmental friendly tribological solutions for applications in aerospace, industrial gas turbine, automotive, printing, oil and gas, steel, and pulp and paper industries. Almost 23% of the world’s total energy consumption originates from tribological contacts. Thermal spray WC-Co coatings provide excellent wear resistance for industrial applications in sliding and rolling contacts. Some of these applications in abrasive, sliding and erosive conditions include sink rolls in zinc pots, conveyor screws, pump housings, impeller shafts, aircraft flap tracks, cam followers and expansion joints. These coatings are considered as a replacement of the hazardous chrome plating for tribological applications. The microstructure of thermal spray coatings is however complex, and the wear mechanisms and wear rates vary significantly when compared to cemented WC-Co carbides or vapour deposition WC coatings. This paper provides an expert review of the tribological considerations that dictate the sliding wear performance of thermal spray WC-Co coatings. Structure–property relationships and failure modes are discussed to grasp the design aspects of WC-Co coatings for tribological applications. Recent developments of suspension sprayed nanocomposite coatings are compared with conventional coatings in terms of performance and failure mechanisms. The dependency of coating microstructure, binder material, carbide size, fracture toughness, post-treatment and hardness on sliding wear performance and test methodology is discussed. Semiempirical mathematical models of wear rate related to the influence of tribological test conditions and coating characteristics are analysed for sliding contacts. Finally, advances for numerical modelling of sliding wear rate are discussed.


2013 ◽  
Vol 44 (6) ◽  
pp. 2573-2580 ◽  
Author(s):  
Jeonghyeon Do ◽  
Seungmun Jung ◽  
Hyuk-Joong Lee ◽  
Byeong-Joo Lee ◽  
Gil-up Cha ◽  
...  

2017 ◽  
Vol 4 (2) ◽  
pp. 95-103 ◽  
Author(s):  
Amardeep S. Kang ◽  
Jasmaninder S. Grewal ◽  
Gurmeet S. Cheema

Author(s):  
G. Grigorenko ◽  
A. Borisova

Abstract An integrated approach was developed for investigation of thermal spray coatings with the amorphous-crystalline structure. The new approach combines methods of metallography, differential thermal and X-ray phase analysis, scanning electron microscopy and X-ray microanalysis. This makes it possible to reveal structural, phase and chemical heterogeneity, determine the degree of amorphization of coatings, temperature and heat of crystallization of the amorphous phase during heating. The new integrated approach was used to study amorphous-crystalline coatings of the Ni-P, Fe-Ni-B and Fe-B systems produced by thermal spraying.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Vineet Shibe ◽  
Vikas Chawla

Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun) thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 steel and D-Gun sprayed WC-12% Co and Cr3C2-25% NiCr coatings on base material is observed on a Pin-On-Disc Wear Tester. Sliding wear performance of WC-12% Co coating is found to be better than the Cr3C2-25% NiCr coating. Wear performance of both these cermet coatings is found to be better than uncoated ASTM A36 steel. Thermally sprayed WC-12% Co and Cr3C2-25% NiCr cermet coatings using D-Gun thermal spray technique is found to be very useful in improving the sliding wear resistance of ASTM A36 steel.


2008 ◽  
Vol 24 (5) ◽  
pp. 374-382 ◽  
Author(s):  
Y. Y. Santana ◽  
La J. G. Barbera-Sosa ◽  
J. Caro ◽  
E. S. Puchi-Cabrera ◽  
M. H. Staia

2018 ◽  
Vol 284 ◽  
pp. 1151-1156
Author(s):  
Lenar N. Shafigullin ◽  
A.R. Ibragimov ◽  
A.I. Saifutdinov

C. C. Berndt advanced investigations of mechanical properties of thermal spray coatings under 4-point bending. He found that this investigation method is sensitive to the mechanical properties of thermal spray coatings.This paper contains the detailed investigation results for thermal spray coatings of zirconium dioxide under 4-point bending, i.e. tests of the specimens subjected to spraying at varying conditions and pre-test soaking with the various duration at 1100 °С.It was established how the mechanical properties of thermal spray coatings changed depending on the spraying mode and high temperature soaking. The test results show that the double heat treatment of coatings is more preferable than one-time heat treatment as it make the properties change linearly. It is more easily controllable during operation of the components with thermal spray coating.


Sign in / Sign up

Export Citation Format

Share Document