Experimental analysis of piezoelectric transducers applications for energy harvesting pavement

2021 ◽  
pp. 478-483
Author(s):  
H. Zhao ◽  
C. Li ◽  
L. Ma ◽  
K. Peng ◽  
Z.Y. Bian
Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3512 ◽  
Author(s):  
Corina Covaci ◽  
Aurel Gontean

The goal of this paper is to review current methods of energy harvesting, while focusing on piezoelectric energy harvesting. The piezoelectric energy harvesting technique is based on the materials’ property of generating an electric field when a mechanical force is applied. This phenomenon is known as the direct piezoelectric effect. Piezoelectric transducers can be of different shapes and materials, making them suitable for a multitude of applications. To optimize the use of piezoelectric devices in applications, a model is needed to observe the behavior in the time and frequency domain. In addition to different aspects of piezoelectric modeling, this paper also presents several circuits used to maximize the energy harvested.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3926
Author(s):  
Joanna Iwaniec ◽  
Grzegorz Litak ◽  
Marek Iwaniec ◽  
Jerzy Margielewicz ◽  
Damian Gąska ◽  
...  

In this paper, the frequency broadband effect in vibration energy harvesting was studied numerically using a quasi-zero stiffness resonator with two potential wells and piezoelectric transducers. Corresponding solutions were investigated for system excitation harmonics at various frequencies. Solutions for the higher voltage output were collected in specific branches of the power output diagram. Both the resonant solution synchronized with excitation and the frequency responses of the subharmonic spectra were found. The selected cases were illustrated and classified using a phase portrait, a Poincaré section, and recurrence plot (RP) approaches. Select recurrence quantification analysis (RQA) measures were used to characterize the discussed solutions.


Author(s):  
Farbod Khameneifar ◽  
Siamak Arzanpour

The concept of harvesting energy in our surrounding has recently drawn global attention. Harvesting the ambient energy of the deflected tire and convert it to electricity is discussed in this paper. An Elastic pneumatic tire deflects due to the load it carries. This deflection appears as a contact patch to the road surface. Initially, the concept of the tire deflection will be discussed. This deflection is then related to the wasted energy used for deflection. The dependency of this energy to some important parameters such as the tire air pressure, vehicle speed and tire geometry and forces are primarily discussed. To harvest the deflection energy different well established methods are exists. Due to the tire environment, piezoelectric transducers can serve as the best option. Those transducers are traditionally used to produce mechanical motion due to the applied electrical charges. This material is also capable of generating electrical charges by mechanical motion and deflections. For the tire energy harvesting application, the piezoelectric stacks can be mounted inside a tire structure such that electric charge is generated therein as the wheel assembly moves along a ground surface. For this application, lead-zirconate-titanate (PZT) is selected. The PZT inside the tire is modeled as a cantilever beam vibration in its first mode of vibration. The frequency of vibration is calculated based on the car speed, tire size, and PZT stack length. A mathematical model for this energy harvesting application is derived. Based on this model, the optimum load of the electrical circuit is also found. Finally the amount of energy harvested from tire using PZT is calculated. Although this energy is not significantly high, it will be enough to provide power for wireless sensors applications.


Proceedings ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 25
Author(s):  
Paulo Afonso Ferreira Junior ◽  
Fernando de Souza Campos ◽  
Bruno Albuquerque de Castro ◽  
José Alfredo Covolan Ulson ◽  
Fabrício Guimarães Baptista ◽  
...  

Energy harvesting engineering fields constitutes a promising area to provide electrical power for low-power electric applications obtained from other sources of energy available in the environment such as thermal, electromagnetic, vibrational and acoustic by using transducers. Vibrational sources stand out as a main alternative to be used for generating electric power in sensor nodes in microelectronic devices due to the greater energy conversion efficiency and the use of a simple structure. The cantilever is the main system implemented in studies of obtaining electric energy from vibrations using piezoelectric transducers. Most of piezoelectric transducers in the literature are not yet commercially available and/or are difficult to access for purchase and use. This paper proposes the characterization of low-cost piezoelectric transducers, configured as sensors, for Energy Harvesting applications using three different sizes of circular piezoelectric transducers (PZTs.) with diameters of 3.4 cm, 2.6 cm and 1.5 cm. For all three different PZTs, it was found that the maximum power transfer occurs for a resistive load of 82 kΏ. The maximum power generated in the load for the three PZTs was 40 uW, 14 uW and 1.4 W; with RMS voltages of 2.8 V, 2.10 V and 0.6 V; an acceleration of 1.3 g and a vibration frequency approximate of 7 Hz.


2015 ◽  
Vol 45 ◽  
pp. 143-154 ◽  
Author(s):  
Antônio Augusto Fröhlich ◽  
Eduardo Augusto Bezerra ◽  
Leonardo Kessler Slongo

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1558 ◽  
Author(s):  
Marek Płaczek ◽  
Grzegorz Kokot

Macro Fibre Composites (MFC) are very effective piezoelectric transducers that, among others, can be used as elements of energy harvesting systems. The possibility to generate electric energy, for example, from mechanical vibrations in order to power electrical elements that could not be powered in another way (using wires or batteries) is a great solution. However, such a kind of systems has to be designed by considering all phenomena that could occur during the exploitation of the system. One of those phenomena is the temperature fluctuation during the device operation. In the presented research work, a mathematical model of the energy harvesting system based on MFC transducers is proposed. The mathematical model was validated by laboratory tests conducted on a laboratory stand equipped with a universal mechanical testing machine (Instron Electropuls 10000) and a thermal chamber. During the tests, the samples were subjected to cyclic excitation simulating the operation of the system in various environmental conditions by forcing changes in the system operation temperature with the constant conditions of its excitation.


Author(s):  
Mohsen Safaei ◽  
Steven R. Anton

Total knee replacement has been utilized to restore the functionality of diseased knee joints for more than four decades. Today, despite the relatively high level of patient satisfaction, still about 20% of patients are not fulfilled with their surgical outcomes in terms of function and reduction in pain. There is still an ongoing discussion on correlating the postoperative functionality of the joint to intraoperative alignment, which suffers from lack of in vivo data from the knee after surgery. However, it is necessary to mention that using computer assisted surgical techniques, the outcomes of knee replacement procedures have been remarkably improved. In order to obtain information about the knee function after the operation, the design of a self-powered instrumented knee implant is proposed in this study. The design is a total knee replacement ultra high molecular weight polyethylene insert equipped with four piezoelectric transducers distributed in the medial and lateral compartments of the bearing. The piezoelectric elements are employed to measure the axial force applied on the tibial insert through the femoral component of the joint as well as to track the movement in the center of pressure. In addition, generated voltage from the piezoelectrics is harvested and stored to power embedded electronics for further signal conditioning and data transmitting purposes. The performance of the instrumented implant is investigated via experimental testing on a fabricated prototype in terms of sensing and power harvesting capacity. Piezoelectric force and center of pressure measurements are compared to the actual quantities recorded from the load frame and pressure sensitive films in order to evaluate the performance of the sensing system. The output voltage of the piezoelectric transducers is rectified and stored in a capacitor to evaluate the energy harvesting ability of the system. The results show only a small level of error in sensing the force and the location of center of pressure. Additionally, a 4.9 V constant voltage is stored in a 3.3 mF capacitor after 3333 loading cycles. The sensing and energy harvesting results present the promising potential of this system to be used as an integrated self-powered instrumented knee implant.


Sign in / Sign up

Export Citation Format

Share Document