mechanical motion
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 85)

H-INDEX

29
(FIVE YEARS 6)

Author(s):  
Kyosuke Shimizu ◽  
Ayumu OSUMI ◽  
Youichi Ito

Abstract A scanning airborne ultrasound source technique was developed to overcome the riskiness of laser ultrasound, which uses an ultrasound source that has a fixed sound wave focusing point and thus requires mechanical motion for sound source scanning. Therefore, the measurement time becomes longer. To solve this problem, we have proposed a method of simultaneously exciting many measurement points in the target using focused ultrasound sources of different frequencies. In this paper, we investigated the visualization of defects in a thin metal plate by the scanning elastic wave source technique using an airborne ultrasound source driven at two frequencies. When the testing was performed using two frequencies, either frequency visualized the defects.


Author(s):  
Timothy H Boyer

Abstract In the first quarter of the 20th century, physicists were not aware of the existence of classical electromagnetic zero-point radiation nor of the importance of special relativity. Inclusion of these aspects allows classical electron theory to be extended beyond its 19th century successes. Here we review spherical electromagnetic radiation modes in a conducting-walled spherical cavity and connect these modes to classical electromagnetic zero-point radiation and to electromagnetic scale invariance. Then we turn to the scattering of radiation in classical electron theory within a simple approximation. We emphasize that, in steady-state, the interaction between matter and radiation is disguised so that the mechanical motion appears to occur without the emission of radiation, even though the particle motion is actually driven by classical electromagnetic radiation. It is pointed out that, for nonrelativistic particles, only the harmonic oscillator potential taken in the low-velocity limit allows a consistent equilibrium with classical electromagnetic zero-point radiation. For relativistic particles, only the Coulomb potential is consistent with electrodynamics. The classical analysis places restrictions on the value of e^2/(hbar c).


Author(s):  
Mohammad Javanshiry

The mechanical motion of a system consisting of simple springs is investigated from the viewpoint of two inertial observers with a relativistic relative velocity. It is shown that the final displacement of the springs is not measured the same by the observers. Indeed, it is demonstrated that there is an incompatibility between kinematics and dynamics in Einstein’s relativity regarding the force transformation.


2021 ◽  
Vol 127 (24) ◽  
Author(s):  
G. Enzian ◽  
L. Freisem ◽  
J. J. Price ◽  
A. Ø. Svela ◽  
J. Clarke ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Koki Sano ◽  
Xiang Wang ◽  
Zhifang Sun ◽  
Satoshi Aya ◽  
Fumito Araoka ◽  
...  

AbstractJust like in living organisms, if precise coherent operation of tiny movable components is possible, one may generate a macroscopic mechanical motion. Here we report that ~1010 pieces of colloidally dispersed nanosheets in aqueous media can be made to operate coherently to generate a propagating macroscopic wave under a non-equilibrium state. The nanosheets are initially forced to adopt a monodomain cofacial geometry with a large and uniform plane-to-plane distance of ~420 nm, where they are strongly correlated by competitive electrostatic repulsion and van der Waals attraction. When the electrostatic repulsion is progressively attenuated by the addition of ionic species, the nanosheets sequentially undergo coherent motions, generating a propagating wave. This elaborate wave in time and space can transport microparticles over a long distance in uniform direction and velocity. The present discovery may provide a general principle for the design of macroscopically movable devices from huge numbers of tiny components.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6863
Author(s):  
Daniele Esposito ◽  
Jessica Centracchio ◽  
Emilio Andreozzi ◽  
Gaetano D. Gargiulo ◽  
Ganesh R. Naik ◽  
...  

As a definition, Human–Machine Interface (HMI) enables a person to interact with a device. Starting from elementary equipment, the recent development of novel techniques and unobtrusive devices for biosignals monitoring paved the way for a new class of HMIs, which take such biosignals as inputs to control various applications. The current survey aims to review the large literature of the last two decades regarding biosignal-based HMIs for assistance and rehabilitation to outline state-of-the-art and identify emerging technologies and potential future research trends. PubMed and other databases were surveyed by using specific keywords. The found studies were further screened in three levels (title, abstract, full-text), and eventually, 144 journal papers and 37 conference papers were included. Four macrocategories were considered to classify the different biosignals used for HMI control: biopotential, muscle mechanical motion, body motion, and their combinations (hybrid systems). The HMIs were also classified according to their target application by considering six categories: prosthetic control, robotic control, virtual reality control, gesture recognition, communication, and smart environment control. An ever-growing number of publications has been observed over the last years. Most of the studies (about 67%) pertain to the assistive field, while 20% relate to rehabilitation and 13% to assistance and rehabilitation. A moderate increase can be observed in studies focusing on robotic control, prosthetic control, and gesture recognition in the last decade. In contrast, studies on the other targets experienced only a small increase. Biopotentials are no longer the leading control signals, and the use of muscle mechanical motion signals has experienced a considerable rise, especially in prosthetic control. Hybrid technologies are promising, as they could lead to higher performances. However, they also increase HMIs’ complexity, so their usefulness should be carefully evaluated for the specific application.


Digital Twin ◽  
2021 ◽  
Vol 1 ◽  
pp. 6
Author(s):  
Hao Li ◽  
Gen Liu ◽  
Haoqi Wang ◽  
Xiaoyu Wen ◽  
Guizhong Xie ◽  
...  

Background: Digital twin requires virtual reality mapping and optimization iteration between physical devices and virtual models. The mechanical movement data collection of physical equipment is essential for the implementation of accurate virtual and physical synchronization in a digital twin environment. However, the traditional approach relying on PLC (programmable logic control) fails to collect various mechanical motion state data. Additionally, few investigations have used machine visions for the virtual and physical synchronization of equipment. Thus, this paper presents a mechanical movement data acquisition method based on multilayer neural networks and machine vision. Methods: Firstly, various visual marks with different colors and shapes are designed for marking physical devices. Secondly, a recognition method based on the Hough transform and histogram feature is proposed to realize the recognition of shape and color features respectively. Then, the multilayer neural network model is introduced in the visual mark location. The neural network is trained by the dropout algorithm to realize the tracking and location of the visual mark. To test the proposed method, 1000 samples were selected. Results: The experiment results shows that when the size of the visual mark is larger than 6mm, the recognition success rate of the recognition algorithm can reach more than 95%. In the actual operation environment with multiple cameras, the identification points can be located more accurately. Moreover, the camera calibration process of binocular and multi-eye vision can be simplified by the multilayer neural networks. Conclusions: This study proposes an effective method in the collection of mechanical motion data of physical equipment in a digital twin environment. Further studies are needed to perceive posture and shape data of physical entities under the multi-camera redundant shooting.


2021 ◽  
Vol 7 (2) ◽  
pp. 771-774
Author(s):  
Franz Selbmann ◽  
Mario Baum ◽  
Marco Bobinger ◽  
Markus Gottwald ◽  
Maik Wiemer ◽  
...  

Abstract Triboelectric nanogenerators (TENGs) are energy converters or energy harvesters that convert mechanical motion into electrical energy on the basis of their material properties. A particular advantage of the TENG is its ability to convert small, low-frequency and random mechanical movements that are relevant for body movements and wearable applications. Within the presented study, different Parylene types were analysed as the dielectric material in TENG and found to be promising with respect to providing high output voltages and powers, respectively. Besides the verification of the usability of Parylene for TENG and its superior triboelectric properties, also significant differences were found between the Parylene types.


Sign in / Sign up

Export Citation Format

Share Document