Analysis of surface damage induced in silicon substrates by reactive ion etching of silicon dioxide

Author(s):  
F. Uchida ◽  
Miyako Matsui ◽  
Kiyomi Katsuyama ◽  
Takafumi Tokunaga ◽  
Masayuki Kojima
2005 ◽  
Vol 483-485 ◽  
pp. 765-768 ◽  
Author(s):  
Jun Hai Xia ◽  
E. Rusli ◽  
R. Gopalakrishnan ◽  
S.F. Choy ◽  
Chin Che Tin ◽  
...  

Reactive ion etching of SiC induced surface damage, e.g., micromasking effect induced coarse and textured surface, is one of the main concerns in the fabrication of SiC based power devices [1]. Based on CHF3 + O2 plasma, 4H-SiC was etched under a wide range of RF power. Extreme coarse and textured etched surfaces were observed under certain etching conditions. A super-linear relationship was found between the surface roughness and RF power when the latter was varied from 40 to 160 W. A further increase in the RF power to 200 W caused the surface roughness to drop abruptly from its maximum value of 182.4 nm to its minimum value of 1.3 nm. Auger electron spectroscopy (AES) results revealed that besides the Al micromasking effect, the carbon residue that formed a carbon-rich layer, could also play a significant role in affecting the surface roughness. Based on the AES results, an alternative explanation on the origin of the coarse surface is proposed.


1989 ◽  
Vol 158 ◽  
Author(s):  
Sun Jin Yun ◽  
Young-Jin Jeon ◽  
Jeong Y. Lee

ABSTRACTThe silicon trench etching in BCl3/Cl2 reactive ion etching plasma leads to the intrinsic bonding damage, the permeations of etching species and impurities into silicon substrates, and the deposition of residue film on trench sidewall. The contaminations and the damages in trench were investigated by using high resolution transmission electron microscopy (HRTEM), secondary ion mass spectrometry (SIMS), and x-ray photoelectron spectroscopy (XPS). The microstructure of the rounded bottom surface showed that the surface region was distorted by 2 - 6 atomic layers and the trench etch was mainly limited by the physical sputtering-like mechanism. The damage in the silicon lattice consisted of prominent planar defects roughly confined to {110} and {111} planes. The thickness of sidewall residue film was 10 - 90 nm, which was thinner at deeper region of the trench, whereas that of residue film at the trench bottom was 1.5 - 3.5 nm. The SIMS results of no-patterned specimen presented that the permeation depths of boron and chlorine into the Si-substrate were about 40 and 20 nm, respectively. The presence of BxCly and Cl-related Si chemical states was identified from XPS analysis of the residue film.


1991 ◽  
Vol 240 ◽  
Author(s):  
G. Mclane ◽  
M. Meyyappan ◽  
M. W. Cole ◽  
H. S. Lee ◽  
R. Lareau ◽  
...  

ABSTRACTMagnetron reactive ion etching is an attractive alternative to reactive ion etching since it has the potential for producing minimal surface damage while still retaining the advantages of reactive ion etching. We report here the results of a study of GaAs magnetron ion etching using Freon-12 and silicon tetrachloride etch gases. Differences are found in etch profiles and surface region characteristics of GaAs samples etched by the two gases. The relevant mechanisms are discussed.


1987 ◽  
Author(s):  
Peter C. Sukanek ◽  
Glynis Sullivan

Vacuum ◽  
1994 ◽  
Vol 45 (5) ◽  
pp. 519-524 ◽  
Author(s):  
R Jackson ◽  
AJ Pidduck ◽  
MA Green

Sign in / Sign up

Export Citation Format

Share Document