Low Damage Magnetron Reactive Ion Etching of GaAs

1991 ◽  
Vol 240 ◽  
Author(s):  
G. Mclane ◽  
M. Meyyappan ◽  
M. W. Cole ◽  
H. S. Lee ◽  
R. Lareau ◽  
...  

ABSTRACTMagnetron reactive ion etching is an attractive alternative to reactive ion etching since it has the potential for producing minimal surface damage while still retaining the advantages of reactive ion etching. We report here the results of a study of GaAs magnetron ion etching using Freon-12 and silicon tetrachloride etch gases. Differences are found in etch profiles and surface region characteristics of GaAs samples etched by the two gases. The relevant mechanisms are discussed.

2005 ◽  
Vol 483-485 ◽  
pp. 765-768 ◽  
Author(s):  
Jun Hai Xia ◽  
E. Rusli ◽  
R. Gopalakrishnan ◽  
S.F. Choy ◽  
Chin Che Tin ◽  
...  

Reactive ion etching of SiC induced surface damage, e.g., micromasking effect induced coarse and textured surface, is one of the main concerns in the fabrication of SiC based power devices [1]. Based on CHF3 + O2 plasma, 4H-SiC was etched under a wide range of RF power. Extreme coarse and textured etched surfaces were observed under certain etching conditions. A super-linear relationship was found between the surface roughness and RF power when the latter was varied from 40 to 160 W. A further increase in the RF power to 200 W caused the surface roughness to drop abruptly from its maximum value of 182.4 nm to its minimum value of 1.3 nm. Auger electron spectroscopy (AES) results revealed that besides the Al micromasking effect, the carbon residue that formed a carbon-rich layer, could also play a significant role in affecting the surface roughness. Based on the AES results, an alternative explanation on the origin of the coarse surface is proposed.


1989 ◽  
Vol 158 ◽  
Author(s):  
Sun Jin Yun ◽  
Young-Jin Jeon ◽  
Jeong Y. Lee

ABSTRACTThe silicon trench etching in BCl3/Cl2 reactive ion etching plasma leads to the intrinsic bonding damage, the permeations of etching species and impurities into silicon substrates, and the deposition of residue film on trench sidewall. The contaminations and the damages in trench were investigated by using high resolution transmission electron microscopy (HRTEM), secondary ion mass spectrometry (SIMS), and x-ray photoelectron spectroscopy (XPS). The microstructure of the rounded bottom surface showed that the surface region was distorted by 2 - 6 atomic layers and the trench etch was mainly limited by the physical sputtering-like mechanism. The damage in the silicon lattice consisted of prominent planar defects roughly confined to {110} and {111} planes. The thickness of sidewall residue film was 10 - 90 nm, which was thinner at deeper region of the trench, whereas that of residue film at the trench bottom was 1.5 - 3.5 nm. The SIMS results of no-patterned specimen presented that the permeation depths of boron and chlorine into the Si-substrate were about 40 and 20 nm, respectively. The presence of BxCly and Cl-related Si chemical states was identified from XPS analysis of the residue film.


2019 ◽  
Vol 9 (9) ◽  
pp. 1804
Author(s):  
Amal Kabalan

Silicon micropillars have been suggested as one of the techniques for improving the efficiency of devices. Fabrication of micropillars has been done in several ways—Metal Assisted Chemical Etching (MACE) and Reactive Ion Etching (RIE) being the most popular techniques. These techniques include etching through the surface which results in surface damage that affects the carrier lifetime. This paper presents a study that compares the carrier lifetime of micropillars fabricated using RIE and MACE methods. It also looks at increasing carrier lifetime by surface treatment using three main approaches: surface passivation by depositing Al2O3, surface passivation by depositing SiO2/SiN, and surface passivation by etching using KOH and Hydrofluoric Nitric Acetic (HNA) solution. It was concluded that passivating with SiO2 and SiN results in the highest carrier lifetime on the MACE and RIE pillars.


1994 ◽  
Vol 12 (4) ◽  
pp. 1356-1359 ◽  
Author(s):  
G. F. McLane ◽  
W. R. Buchwald ◽  
L. Casas ◽  
M. W. Cole

Sign in / Sign up

Export Citation Format

Share Document