Rapid Microbial Water Quality Measurement by Automated Determination of the Fecal Indicator Bacterium Escherichia coli A Review

Author(s):  
Maximilian Lackner
2005 ◽  
Vol 50 (11) ◽  
pp. 1251-1261 ◽  
Author(s):  
Michael J. LaGier ◽  
Christopher A. Scholin ◽  
Jack W. Fell ◽  
Joseph Wang ◽  
Kelly D. Goodwin

2017 ◽  
Vol 78 (1) ◽  
pp. 155-159 ◽  
Author(s):  
M. Oliveira ◽  
D. Freire ◽  
N. M. Pedroso

Abstract The detection of pathogenic microorganisms in aquatic environments is extremely relevant in terms of public health. As these laboratorial methodologies are usually difficult, expensive and time-consuming, they are frequently replaced by the assessment of fecal indicator bacteria, such as Escherichia coli. This study aimed to assess the presence of E. coli in fecal samples from Neotropical otters, to evaluate its potential as fecal indicator to be applied to the determination of water microbiological quality in areas where otters’ populations are high. Twenty-six otter fecal samples, collected in Alto Paranapanema river basin, São Paulo State, Brazil, were analyzed for the presence of E. coli, using conventional bacteriological methods. Only 8 scat samples (30%) were E. coli positive, indicating that this microorganism is not a suitable fecal indicator to assess water fecal contamination by Neotropical otters, and should not be used to infer the presence of otter related pathogens in waters.


Water ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 264 ◽  
Author(s):  
◽  
◽  
◽  

An unmanned aerial vehicle-assisted water quality measurement system (UAMS) was developed for in situ surface water quality measurement. A custom-built hexacopter was equipped with an open-source electronic sensors platform to measure the temperature, electrical conductivity (EC), dissolved oxygen (DO), and pH of water. Electronic components of the system were coated with a water-resistant film, and the hexacopter was assembled with flotation equipment. The measurements were made at thirteen sampling waypoints within a 1.1 ha agricultural pond. Measurements made by an open-source multiprobe meter (OSMM) attached to the unmanned aerial vehicle (UAV) were compared to the measurements made by a commercial multiprobe meter (CMM). Percent differences between the OSMM and CMM measurements for DO, EC, pH, and temperature were 2.1 %, 3.43 %, 3.76 %, and <1.0 %, respectively. The collected water quality data was used to interpret the spatial distribution of measurements in the pond. The UAMS successfully made semiautonomous in situ water quality measurements from predetermined waypoints. Water quality maps showed homogeneous distribution of measured constituents across the pond. The concept presented in this paper can be applied to the monitoring of water quality in larger surface waterbodies.


Author(s):  
Shashika Lokuliyana ◽  
Anuradha Jayakody ◽  
N.B.R.P. Bandara ◽  
J.W.P. Deshapriya ◽  
P.C Kavinda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document