Global Robust Sliding Mode Tracking Control for Helicopter with Input Time Delay

2013 ◽  
Vol 846-847 ◽  
pp. 434-437 ◽  
Author(s):  
Ling Cai ◽  
Fu Yang Chen ◽  
Fei Fei Lu

In this paper, a global sliding mode control scheme is proposed for a helicopter with input time delay and disturbance. We proposed a new method for integral sliding surface. By the design of dynamic nonlinear sliding mode function, the controller has the advantage of eliminating the reaching movement of traditional sliding mode control, overcoming the effect of the disturbance and time delay. The system state variables reached the sliding surface at the very beginning by means of designing a dynamic nonlinear sliding mode function, and moved to the expected state under the control of control law. The efficiency of the proposed method is demonstrated by simulation results.

2019 ◽  
Vol 9 (6) ◽  
pp. 1124
Author(s):  
Yu Quan ◽  
Lijun Hang ◽  
Yuanbin He ◽  
Yao Zhang

In general, the integral sliding mode control (ISMC) with an integral sliding surface would lead to tracking errors under unbalanced and harmonic grid voltage conditions. In order to eliminate tracking errors under these conditions, multi-resonant items are added to the conventional integral sliding surface in the proposed strategy, which can be called multi-resonant-based sliding mode control (MRSMC). A comparison of tracking precision on the ISMC and MRSMC is analyzed. In order to regulate the system powers directly, the errors of instantaneous active and reactive powers are selected as the state variables. Finally, the output current harmonics and a majority of the doubly-fed induction generator’s (DFIG) electromagnetic torque pulsations can be removed under unbalanced and harmonic grid voltage conditions. Simulation and experimental results are presented to verify the correctness and effectiveness of the proposed strategy.


2011 ◽  
Vol 18 (9) ◽  
pp. 1254-1260 ◽  
Author(s):  
Bo Song ◽  
Jian-Qiao Sun

A study of sliding mode control of uncertain dynamical systems with time delay is presented in this paper. The systems are assumed to have constant delay time and uncertain parameters with known upper and lower bounds. The method of continuous time approximation is applied to formulate the sliding mode control problem. The proposed treatment of the control delay leads to a higher-order control formulation for a system with additive uncertainties only. An optimal sliding surface is designed such that on the sliding surface, the controlled state variables act like a feedback control to the uncontrolled state variables. Examples of non-linear systems are presented to demonstrate the theoretical work.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 54
Author(s):  
Minh-Thien Tran ◽  
Dong-Hun Lee ◽  
Soumayya Chakir ◽  
Young-Bok Kim

This article proposes a novel adaptive super-twisting sliding mode control scheme with a time-delay estimation technique (ASTSMC-TDE) to control the yaw angle of a single ducted-fan unmanned aerial vehicle system. Such systems are highly nonlinear; hence, the proposed control scheme is a combination of several control schemes; super-twisting sliding mode, TDE technique to estimate the nonlinear factors of the system, and an adaptive sliding mode. The tracking error of the ASTSMC-TDE is guaranteed to be uniformly ultimately bounded using Lyapunov stability theory. Moreover, to enhance the versatility and the practical feasibility of the proposed control scheme, a comparison study between the proposed controller and a proportional-integral-derivative controller (PID) is conducted. The comparison is achieved through two different scenarios: a normal mode and an abnormal mode. Simulation and experimental tests are carried out to provide an in-depth investigation of the performance of the proposed ASTSMC-TDE control system.


2016 ◽  
Vol 829 ◽  
pp. 128-132 ◽  
Author(s):  
Van Van Huynh ◽  
Minh Hoang Quang Tran

In this paper, a new integral sliding mode control scheme is designed for the 3-pole active magnetic bearing system. First, a new integral sliding surface is designed such that the 3-pole active magnetic bearing system in the sliding mode is asymptotically stable under certain conditions. Then, an adaptive controller is designed to solve the unknown upper bound of matched uncertainty and guarantee the reachability of the integral sliding surface. Finally, the performance of the proposed integral sliding mode controller is applied to 3-pole active magnetic bearing system to demonstrate the efficacy of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Pedro R. Acosta

This paper deals with a class of second order sliding mode systems. Based on the derivative of the sliding surface, sufficient conditions are given for stability. However, the discontinuous control signal depend neither on the derivative of sliding surface nor on its estimate. Time delay in control input is also an important issue in sliding mode control for engineering applications. Therefore, also sufficient conditions are given for the time delay size on the discontinuous input signal, so that this class of second order sliding mode systems might have amplitude bounded oscillations. Moreover, amplitude of such oscillations may be estimated. Some numerical examples are given to validate the results. At the end, some conclusions are given on the possibilities of the results as well as their limitations.


Author(s):  
Zhiqiang Ma ◽  
Zheng H Zhu ◽  
Guanghui Sun

This paper proposes a fractional-order integral sliding mode control with the order 0 <  ν < 1 to stabilize the deployment of tethered spacecraft system with only tension regulation. The work in this paper is partially based on integer-order nonlinear sliding mode controller and improves its performance with fractional-order calculus. The proposed scheme makes use of integral sliding surface to obtain smaller convergence regions of state errors, and the fractional derivative is synthesized to enhance the flexibility of controller design by fining parameters for better dynamic and steady-state performance. Fractional-order observers help to eliminate external disturbances while the adaptive law is presented to remove the adverse effect in stability analyses, and fractional-order uniform ultimate boundedness is proved to guarantee the existence of the proposed sliding surface. According to theoretical analyses, the fractional order will indeed affect the dynamic and steady-state performance of control system, and the proposed method will be verified in numerical simulations compared with the nonlinear sliding mode counterpart.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zhaolan He ◽  
Xue Wang ◽  
Zongwei Gao ◽  
Jingjie Bai

This paper is concerned with a state observer-based sliding mode control design methodology for a class of continuous-time state-delayed switched systems with unmeasurable states and nonlinear uncertainties. The advantages of the proposed scheme mainly lie in which it eliminates the need for state variables to be full accessible and parameter uncertainties to be satisfied with the matching condition. Firstly, a state observer is constructed, and a sliding surface is designed. By matrix transformation techniques, combined with Lyapunov function and sliding surface function, a sufficient condition is given to ensure asymptotic stability of the overall closed-loop systems composed of the observer dynamics and the estimation error dynamics. Then, reachability of sliding surface is investigated. At last, an illustrative numerical example is presented to prove feasibility of the proposed approaches.


Sign in / Sign up

Export Citation Format

Share Document