Numerical modeling of air flow and pollutant distribution in industrial workshop with different solar chimney on the roof

Author(s):  
Yu-feng Xue ◽  
Xian-zhong Zhang ◽  
Ya-xin Su ◽  
Wen-yi Deng
Author(s):  
B. P. Huynh

Natural-ventilation flow induced in a real-sized rectangular-box room fitted with a solar chimney on its roof is investigated numerically, using a commercial CFD (Computational Fluid Dynamics) software package. The chimney in turn is in the form of a parallel channel with one plate being subjected to uniform solar heat flux. Ventilation rate and air-flow pattern through the room are considered in terms of the heat flux for two different locations of the room’s inlet opening. Chien’s turbulence model of low-Reynolds-number K-ε is used in a Reynolds-Averaged Navier-Stokes (RANS) formulation. It is found that ventilation flow rate increases quickly with solar heat flux when this flux is low, but more gradually at higher flux. At low heat flux, ventilation rate is not significantly affected by location of the inlet opening to the room. On the other hand, at high heat flux, ventilation rate varies substantially with the opening’s location. Location of the inlet opening to the room also affects strongly the air-flow pattern. In any case, ample ventilation rate is readily induced by the chimney.


Author(s):  
Magdalena Nakielska ◽  
Krzysztof Pawłowski

Nowadays, people are looking for solutions related to ventilation, cooling or heat demand systems, which would be energy efficient and, at the same time, would not cause the degradation of the surrounding environment. As far as ventilation is concerned, an good solution is a natural ventilation, which improves thermal comfort rooms without increasing the consumption of electrical energy in the building. In order to improve the mode of action of the natural ventilation in the building, one can mount various elements supporting the air flow. One of them is a solar chimney. In order to check the correct operation of a gravity ventilation installation in Poland’s climatic conditions, the measurements was carried out on a test stand on the 3.1 building of UTP University of Science and Technology in Bydgoszcz. The received results show the intensification of the air flow through the room the value between 50% and 150%, depending on a measuring hour (Chen et al. 2003). These research results were compared with the research results received before the installation of the solar chimney on the ducts of the gravity ventilation.


2019 ◽  
Vol 15 (10) ◽  
Author(s):  
Omid Reza Roustapour ◽  
Hamid Reza Gazor ◽  
Kazemi Farzin

AbstractIn this study, air deflector plates were used in order to increase the air elapsed time in the chamber. The air flow pattern was simulated using computational fluid dynamics. The geometry of the chamber was produced in 2D and meshed by triangular and quadrilateral elements, boundary conditions were defined and the governing equations solved. Modeling of flow without any deflectors depicted the air flowed to the chamber conducted to the outlet without any distortion. Air vortices were generated when the deflectors defined in model. To evaluate the influence of deflectors on drying period, constructed plates installed in the dryer chamber and melon slices were dried when deflectors used or not. Simulation results showed magnitude of the air velocity was increased and temperature uniform distribution developed on the surface of trays. The outlet temperature was also decreased up to 10 % and drying time reduced to 22 % when the deflectors were employed.


Author(s):  
Khaled I. E. Ahmed ◽  
Ali K. Abdel-Rahman ◽  
Mahmoud Ahmed ◽  
Wael M. Khairaldien

Renewable energy source deployment is growing rapidly as it reduces CO2 emissions and increases diversity and security of supply. Solar chimney (SC) is a promising large-scale power technology, which absorbs solar radiation and converts parts of solar energy into electric power free of CO2 emissions. A major problem of Solar Chimney Power Plant (SCPP) is its low conversion efficiency as determined by the thermal performance of the system. However, the conversion efficiency of SCPP significantly increases with the SC height increase. The current paper proposes a new design of a virtual height aided solar chimney. In this new system the solar chimney is aided with a passive cooling system at the top of the chimney and a passive solar heater at its base to virtually mimic larger heights of the chimney. The new design has been simulated numerically for development and optimization. The numerical study is done in two stages to examine this concept. In the first stage, numerical results are obtained for the effect of the chimney height on the inside air flow speed. Then, in the second stage, the effect of decreasing the temperature at the chimney exit and the effect of increasing the temperature at the chimney base on the air flow speed are examined separately for small chimney heights. Then the combined effect of the two actions is investigated at a wide range of chimney heights. The numerical results have shown that the localized base heating and exit cooling have significantly enhanced the chimney performance for chimney heights up to 500m. A chimney with height of 300m gains an increase in the air velocity more than 25% due to the heating and cooling actions. Virtual height aided Chimney with original height of 300m acts similarly to a conventional chimney with height of 500m due to the effect of base heating and exit cooling actions. This air flow velocity increase reflects 100% increase in the expected generated electric power. Further detailed results are presented and discussed.


2017 ◽  
Vol 39 (5) ◽  
pp. 84-90
Author(s):  
B. I. Basok ◽  
B. V. Davydenko ◽  
V. G. Novikov ◽  
S. M. Goncharuk
Keyword(s):  

В работе представлены результаты численного моделирования восходящего течения воздуха с твердыми частицами биотоплива в канале с переменным сечением. Определены особенности движения частиц и их динамические характеристики в зависимости от скорости воздушного потока на входе в канал.


2018 ◽  
Vol 9 (1) ◽  
pp. 50
Author(s):  
H. Benbih ◽  
Kamal Gueraoui ◽  
H. Bensalah ◽  
A. Rtibi ◽  
Y. Belkasmi ◽  
...  

Author(s):  
Ahmed Ayadi ◽  
Zied Driss ◽  
Abdallah Bouabidi ◽  
Mohamed Salah Abid

Solar chimney power plants generate thermal heat and electrical power using the radiation from sun. These systems are characterized by their high costs. In fact, it is required to optimize the components of the solar system such as the collector, the chimney, the absorber, and the turbine. This paper focuses on the effect of the number of turbine blades on the air flow within a small prototype of a solar chimney power plant. Four configurations with different turbine blades are proposed to study the effect of the turbine blades number on the thermal characteristics of a solar chimney power plant. For each configuration, the distribution of the magnitude velocity, the air temperature, the pressure, the turbulent kinetic energy, and the turbulent viscosity are presented and discussed. This paper is identified to be of interest for engineers and designers for increasing the power output of a solar chimney power plant.


Sign in / Sign up

Export Citation Format

Share Document