The influence of Al foil current collectors on electrochemical properties of LiFePO4-based Li-ion batteries

Author(s):  
Jichao Wang ◽  
Wen He ◽  
Xudong Zhang ◽  
Yukun Hou ◽  
Zhilong Zhang ◽  
...  
RSC Advances ◽  
2021 ◽  
Vol 11 (44) ◽  
pp. 27356-27368
Author(s):  
Onurcan Buken ◽  
Kayla Mancini ◽  
Amrita Sarkar

A green solvent-based methodology was developed for delaminating cathode active materials from aluminium current collectors in end-of-life Li-ion batteries.


2021 ◽  
pp. 139026
Author(s):  
Manas Ranjan Panda ◽  
Anish Raj Kathribail ◽  
Brindaban Modak ◽  
Supriya Sau ◽  
Dimple P. Dutta ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Tahar Azib ◽  
Claire Thaury ◽  
Fermin Cuevas ◽  
Eric Leroy ◽  
Christian Jordy ◽  
...  

Embedding silicon nanoparticles in an intermetallic matrix is a promising strategy to produce remarkable bulk anode materials for lithium-ion (Li-ion) batteries with low potential, high electrochemical capacity and good cycling stability. These composite materials can be synthetized at a large scale using mechanical milling. However, for Si-Ni3Sn4 composites, milling also induces a chemical reaction between the two components leading to the formation of free Sn and NiSi2, which is detrimental to the performance of the electrode. To prevent this reaction, a modification of the surface chemistry of the silicon has been undertaken. Si nanoparticles coated with a surface layer of either carbon or oxide were used instead of pure silicon. The influence of the coating on the composition, (micro)structure and electrochemical properties of Si-Ni3Sn4 composites is studied and compared with that of pure Si. Si coating strongly reduces the reaction between Si and Ni3Sn4 during milling. Moreover, contrary to pure silicon, Si-coated composites have a plate-like morphology in which the surface-modified silicon particles are surrounded by a nanostructured, Ni3Sn4-based matrix leading to smooth potential profiles during electrochemical cycling. The chemical homogeneity of the matrix is more uniform for carbon-coated than for oxygen-coated silicon. As a consequence, different electrochemical behaviors are obtained depending on the surface chemistry, with better lithiation properties for the carbon-covered silicon able to deliver over 500 mAh/g for at least 400 cycles.


Author(s):  
Jing Zhao ◽  
Hongye Yuan ◽  
Guiling Wang ◽  
Xiao Feng Lim ◽  
Hualin Ye ◽  
...  

The Cu-foil current collectors with Ni3(HITP)2 films were prepared to reduce the energy barrier of the current collector surface and thus provide a uniform seeding layer for the subsequent deposition of Li in Li-ion batteries.


2021 ◽  
Author(s):  
Mengcheng Han ◽  
Lanlan Zhu ◽  
Yan-Mei Li ◽  
Feng Wei

Zn2Ti3O8/g-C3N4 (0, 1, 3 and 8 wt%) composites were prepared through a simple solvothermal method, and their physical and electrochemical properties were systematically analyzed. SEM and HRTEM results show that...


2017 ◽  
Vol 41 (20) ◽  
pp. 11759-11765 ◽  
Author(s):  
Shu Huang ◽  
Jianguo Ren ◽  
Rong Liu ◽  
Min Yue ◽  
Youyuan Huang ◽  
...  

A crosslinked ionomer binder was prepared and used in graphite anodes for Li-ion batteries. These binder-based anodes exhibit enhanced electrochemical performance due to the formation of hydrogen bonds and the release of conductive Li+.


Sign in / Sign up

Export Citation Format

Share Document