Design, manufacturing and analysis for an indexable carbide inserted blade cutting hob of planar double-enveloping circular worm drive

2016 ◽  
pp. 1025-1034
Author(s):  
Y.W. Cai ◽  
L.G. Yao ◽  
J. Zhang ◽  
G.P. Liu ◽  
C.S. Fang
Keyword(s):  
2020 ◽  
Vol 103 (4) ◽  
pp. 003685042098122
Author(s):  
Jingzi Zhang ◽  
Jin’ge Wang ◽  
Kai Wang

Although a significant amount of research on robot joint reducer was conducted, there are few systematic investigations on a novel joint reducer adopting inner worm-gear plane enveloping drum worm drive. To satisfy the development of modular robot joint, the primary objective of this paper was to systematically investigate the drum worm drive adopted in the novel joint reducer with integrated structure of drive, transmission, and support in the following aspects: meshing theory, design, analysis, and manufacture. According to the gear meshing theory, mechanical design method, classical mechanics, finite element method, and machining principle of virtual center distance, the systematic investigations around the drum worm pair applied in the novel joint reducer were conducted including the macro and micro meshing theory, structure design, mechanical and contact properties analyses, and manufacturing method. The novel joint reducer’s integrated structure was designed, and the drum worm pair’s mechanical and contact properties analyses were conducted, which showed: (1) the worm’s bending stress and deflection, worm-gear teeth’s shear stress and bending stress as well as the maximum contact stresses were all below their corresponding allowable values; (2) the maximum contact stresses appeared at the engage-in position of the worm pair opposing to the engaging-out position where the largest contact areas appeared. Then the manufacturing of drum worm’s spiral tooth was conducted via the modified 4-axis linkage CNC grinder according to the conjugate motion. Finally the novel joint reducer’s industrial prototype was assembled. The novel joint reducer with integrated structure of drive, transmission and support was designed and manufactured for the first time. The flowchart of design and manufacture of the reducer’s drum worm pair in this process was formulated, which provides a new insight on the research of joint reducers as well as other fields.


2019 ◽  
Vol 2019 (6) ◽  
pp. 30-37
Author(s):  
Александр Анцев ◽  
Aleksandr Ancev

The process effectiveness of blade cutting is defined considerably with the prediction accuracy of cutting tool durability term. But, in spite of that cutting processes have a probabilistic character, in modern mechanical engineering there are used durability de-pendences describing only the dependence of an average period of blade cutting tool durability upon cutting modes without taking into account a stochastic nature of tool wear depending upon many factors. For ac-counting cutting process variability there are offered stochastic models of cutting tool failure, but they hold good for a cutting tool with one cutting edge and in the case with a multi-blade cutting tool they must be speci-fied. In the paper it is defined that at a fan wear model with the increase of the blade number the period of cutting tool durability decreases, as failure likelihood of even one blade increases because of the blade properties spread of one tool. The factor of a durability period variation decreases with the growth of the blade number because of the decrease of an average durability period decrease. In the case of a wear accumulation model the multi-blade tool reliability does not depend upon the blade number. The dependences of an average period of durability and a factor of variation at a complex model of wear are similar to the case with the fan model of wear, but their values will be higher. In the case of a destruction model the factor of multi-blade tool durability variation does not depend upon the blade number, but an average durability depends considerably upon the blade number, but the dependence appearance corresponds to the dependence of an average durability at a fan model of wear. The type of the dependence of durability average period upon on the blade number at a generalized model of failures is similar to the cases considered previously, and a kind of the dependence of a variation factor changes depending on model parameters


Author(s):  
Yu. M. Zubarev ◽  
M. A. Afanasenkov

The article considers the possibility of improving the performance of mineral-ceramic cutting plates by removing most of the defects on their working surface due to the formation of functional surface layers by ion-vacuum treatment. A model of a surface-hardened layer for VOK-60 type ceramics is proposed. Based on the configuration model of the substance, chemical elements are selected for modifying the surface layer of ceramics. The results of laboratory and production tests that showed an increase in the performance of ceramic plates after implantation by at least two times are presented.


Author(s):  
Marco Giovannini ◽  
Newell Moser ◽  
Kornel Ehmann

This paper reports on a study and application of laser ablation for machining of micro-serrations on surgical blades. The proposed concept is inspired by nature and mimics a mosquito’s maxilla, which is characterized by a number of serrations along its edge in order to painlessly penetrate human skin and tissue. The focus of this study is to investigate the maxilla’s penetration mechanisms and its application to commercial surgical blades. The fundamental objective is to understand the friction and cutting behavior between a serrated hard surface and soft materials, as well as to identify serration patterns that would minimize the cutting force and the friction of the blade during tissue cutting. Micro-serrations characterized by different patterns and sizes ranging from 200 μm to 400 μm were designed and manufactured on surgical blades. As supported by finite element methods (FEM), a reduction of 20∼30% in the force during blade cutting has been achieved, which encourages further studies and their applications to biomedical devices.


Sign in / Sign up

Export Citation Format

Share Document