Applications of Redfield Theory to Systems of Spin 1/2 Nuclei

2017 ◽  
pp. 75-96
Author(s):  
Kowalewski Jozef ◽  
Mler Lena
Keyword(s):  
2016 ◽  
Vol 38 (1) ◽  
pp. 156-164
Author(s):  
Herman Rapaport
Keyword(s):  

2010 ◽  
Vol 99 (2) ◽  
pp. 344-352 ◽  
Author(s):  
Vladimir I. Novoderezhkin ◽  
Alexander B. Doust ◽  
Carles Curutchet ◽  
Gregory D. Scholes ◽  
Rienk van Grondelle

2020 ◽  
Author(s):  
Lorenzo Cupellini ◽  
Filippo Lipparini ◽  
Jianshu Cao

The exciton Hamiltonian of multichromophoric aggregates can be probed by spectroscopic techniques such as linear absorption and circular dichroism. In order to compare calculated Hamiltonians to experiments, a lineshape theory is needed, which takes into account the coupling of the excitons with inter- and intramolecular vibrations. This coupling is normally introduced in a perturbative way through the cumulant expansion formalism, and further approximated by assuming a Markovian exciton dynamics, for example with the modified Redfield theory.<br><br>Here we present an implementation of the full cumulant expansion (FCE) formalism [Ma and Cao, <i>J. Chem. Phys.</i> <b>2015</b>, 142, 094106 ] to efficiently compute absorption and circular dichroism spectra of molecular aggregates beyond the Markov approximation, without restrictions on the form of the exciton-phonon coupling. By employing the LH2 system of purple bacteria as a challenging test case, we compare the FCE lineshapes with the Markovian lineshapes obtained with the modified Redfield theory, showing that the latter present a much poorer agreement with experiments. The FCE approach instead accurately describes the lineshapes, especially in the vibronic sideband of the B800 peak. We envision that the FCE approach will become a valuable tool for accurately comparing model exciton Hamiltonians with optical spectroscopy experiments.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1099
Author(s):  
Chou-Hsun Yang ◽  
Haobin Wang

Extending our previous work, quantum dynamic simulations are performed to study low temperature heat transport in a spin-boson model where a two-level subsystem is coupled to two independent harmonic baths. Multilayer multiconfiguration time-dependent Hartree theory is used to numerically evaluate the thermal flux, for which the bath is represented by hundreds to thousands of modes. The simulation results are compared with the approximate Redfield theory approach, and the physics is analyzed versus different physical parameters.


2001 ◽  
Vol 268 (1-3) ◽  
pp. 121-130 ◽  
Author(s):  
Ulrich Kleinekathöfer ◽  
Ivan Kondov ◽  
Michael Schreiber

Sign in / Sign up

Export Citation Format

Share Document