Security Test Planning

2007 ◽  
pp. 115-131
Keyword(s):  
2005 ◽  
Vol 4 (2) ◽  
pp. 393-400
Author(s):  
Pallavali Radha ◽  
G. Sireesha

The data distributors work is to give sensitive data to a set of presumably trusted third party agents.The data i.e., sent to these third parties are available on the unauthorized places like web and or some ones systems, due to data leakage. The distributor must know the way the data was leaked from one or more agents instead of as opposed to having been independently gathered by other means. Our new proposal on data allocation strategies will improve the probability of identifying leakages along with Security attacks typically result from unintended behaviors or invalid inputs.  Due to too many invalid inputs in the real world programs is labor intensive about security testing.The most desirable thing is to automate or partially automate security-testing process. In this paper we represented Predicate/ Transition nets approach for security tests automated generationby using formal threat models to detect the agents using allocation strategies without modifying the original data.The guilty agent is the one who leaks the distributed data. To detect guilty agents more effectively the idea is to distribute the data intelligently to agents based on sample data request and explicit data request. The fake object implementation algorithms will improve the distributor chance of detecting guilty agents.


2013 ◽  
Vol 7 (1) ◽  
pp. 84-95
Author(s):  
Zhigang Wei ◽  
Shengbin Lin ◽  
Limin Luo ◽  
Fulun Yang ◽  
Dmitri Konson ◽  
...  

MRS Advances ◽  
2018 ◽  
Vol 3 (64) ◽  
pp. 3979-3985
Author(s):  
Brenda Castaños ◽  
Cecilia Fernández ◽  
Laura Peña-Parás ◽  
Demófilo Maldonado-Cortés ◽  
Juan Rodríguez-Salinas

ABSTRACTGreases are essential in the electrical industry for the purpose of minimizing wear and coefficient of friction (COF) between the components of circuit breakers. Nowadays some researchers have explored the addition of nanoparticles to enhance their tribological properties. In this study, tribological tests were performed on different greases employed for the electrical industry. CuO and ZnO nanoparticles were homogeneously dispersed into the greases, varying their concentration (0.01 wt.%, 0.05 wt.%, and 0.10 wt.%). A four-ball tribotest, according to ASTM D-2266, and a ball-on-disk tribotest, according to ASTM G-99, were performed in order to analyze the wear scar diameter (WSD), COF, wear mass loss and worn area. The worn materials were characterized with an optical 3D profilometer measurement system. Anti-wear properties were enhanced up to 29.30% for the lithium complex grease (LG) with no nanoparticles added, in comparison with the aluminum complex grease (AG), providing a much better tribological performance; in the ball-on-disk tribotests, a 72.80% and a 15.74% reduction in the mass loss and COF were achieved, respectively. The addition of nanoparticles was found to provide improvements of 5.31% in WSD for the AG grease and 34.49% in COF for the LG grease. A pilot test was performed following the security test UL489, achieving a reduction of 45.17% in the worn area achieved by LG grease compared to AG grease.


Author(s):  
Stefan Taber ◽  
Christian Schanes ◽  
Clemens Hlauschek ◽  
Florian Fankhauser ◽  
Thomas Grechenig
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document