Mechanism of Friction Reduction by MoDTC/ ZDDP Tribofilms and Associated Nanometer-Scale Controlling Factors

Author(s):  
Jiping Ye
2003 ◽  
Author(s):  
Antanas Daugela ◽  
Vytautas Blechertas ◽  
Oden L. Warren ◽  
Hiroshi Kutomi ◽  
Thomas J. Wyrobek

Ultrasonically induced nanoscale fatigue and friction reduction phenomena are researched for nanometer order thick protective overcoats. The newly developed method described here is a synergy of the nanometer scale quantitative nanoindentation/scratch technique and ultrasonic excitation. A standing ultrasonic wave is generated at the sample holder during the quasi-static nanoindentation/scratch test at an excitation frequency of several hundreds of kilohertz. Due to the fact that high strain rates are being generated at the surface of the sample, nanofatigue phenomenon followed by delamination and overcoat chipping can be observed. Statistical investigation of fatigue inducing parameters, such as critical quasistatic load and amplitude of oscillations, leads to a means of comparative sample characterization.


Author(s):  
Jiping Ye ◽  
Kenichi Ueoka ◽  
Makoto Kano ◽  
Yoshiteru Yasuda ◽  
Yusuke Okamoto ◽  
...  

We have succeeded for the first time anywhere in lowering the friction coefficient of a diamond-like-carbon (DLC) coating to less than 0.01 under boundary lubrication in engine oil [1–3]. This anomalous super-lubrication behavior has been observed for a hydrogen-free DLC-coated (ta-C) disc in an ester-containing oil but not for a hydrogenated DLC (a-C:H) coating. It is thought that some chemical adsorbent may form only on the ta-C sliding surface due to some tribochemical reactions. Our recent studies have suggested that the macro-scale reduction of friction is dependent on nanometer-scale tribological properties [4–6]. The superlow friction behavior seen in a pin-on-disc friction test was taken as the object of this investigation with an eye toward elucidating the mechanism of the anomalous friction reduction. Pin-on-disc tests were conducted by sliding a ta-C/ta-C pair in the presence of poly alpha-olefin based oil containing a modifier additive of glycerol monooleate ester (PAOES1 oil). Nanometer-scale tribological properties were investigated by using atomic force microscopy (AFM), the AFM phase-image technique, and nanoscratch measurements. Attention was focused on the differences in surface roughness, nanostructure and nanofriction coefficient between the sliding and non-sliding areas in an effort to find the origin of the super-lubrication behavior.


Author(s):  
Jeff Gelles

Mechanoenzymes are enzymes which use a chemical reaction to power directed movement along biological polymer. Such enzymes include the cytoskeletal motors (e.g., myosins, dyneins, and kinesins) as well as nucleic acid polymerases and helicases. A single catalytic turnover of a mechanoenzyme moves the enzyme molecule along the polymer a distance on the order of 10−9 m We have developed light microscope and digital image processing methods to detect and measure nanometer-scale motions driven by single mechanoenzyme molecules. These techniques enable one to monitor the occurrence of single reaction steps and to measure the lifetimes of reaction intermediates in individual enzyme molecules. This information can be used to elucidate reaction mechanisms and determine microscopic rate constants. Such an approach circumvents difficulties encountered in the use of traditional transient-state kinetics techniques to examine mechanoenzyme reaction mechanisms.


Author(s):  
R. T. Chen ◽  
R.A. Norwood

Sol-gel processing has been used to control the structure of a material on a nanometer scale in preparing advanced ceramics and glasses. Film coating using the sol-gel process was also found to be a viable process technology in applications such as optical, porous, antireflection and hard coatings. In this study, organically modified silicate (Ormosil) coatings are applied to PET films for various industrial applications. Sol-gel materials are known to exhibit nanometer scale structures which havepreviously been characterized by small-angle X-ray scattering (SAXS), neutron scattering and light scattering. Imaging of the ultrafine sol-gel structures has also been performed using an ultrahigh resolution replica/TEM technique. The objective of this study was to evaluate the ultrafine structures inthe sol gel coatings using a direct imaging technique: atomic force microscopy (AFM). In addition, correlation of microstructures with processing parameters, coating density and other physical properties will be discussed.The materials evaluated are organically modified silicate coatings on PET film substrates. Refractive index measurement by the prism coupling method was used to assess density of the sol-gel coating.AFM imaging was performed on a Nanoscope III AFM (by Digital Instruments) using constant force mode. Solgel coating samples coated with a thin layer of Ft (by ion beam sputtering) were also examined by STM in order to confirm the structures observed in the contact type AFM. In addition, to compare the previous results, sol-gel powder samples were also prepared by ultrasonication followed by Pt/Au shadowing and examined using a JEOL 100CX TEM.


Sign in / Sign up

Export Citation Format

Share Document