Specific Gravity and Absorption Tests of Coarse and Fine Aggregates for Use in the Design of Portland Cement Concrete Mixtures (C 127/128)

2009 ◽  
pp. 33-35
2014 ◽  
Vol 798-799 ◽  
pp. 576-581 ◽  
Author(s):  
Edson Jansen Pedrosa Miranda Jr. ◽  
A.E.M. Paiva ◽  
Ermerson Ney Leite Rodrigues

A differential feature of this work was the use of a type of glass that is little used as fine aggregate in concrete – flat glass powder. This study involved an analysis of the influence of the incorporation of waste glass from the grinding and polishing operations of the glass heat treatment process on the void content, water absorption (W/A) and specific gravity of Portland cement concrete. The coarse and fine aggregates used here were crushed stone and sand, respectively. The concrete was produced using 5%, 10% and 20% of waste glass in place of sand, and water-to-cement (w/c) ratios of 0.50, 0.55 and 0.58. The test specimens were cured for 28 days. The results indicated a reduction in the void content when the percentage of waste glass increased to w/c ratios of 0.55 and 0.58. The reduction of the void content reduced the concrete’s W/A and increased its specific gravity. The waste glass used in this study shows a promising potential for use as fine aggregate in Portland cement concrete. However, other variables must be taken into consideration in the subsequent publications.


2021 ◽  
Author(s):  
Gilson Lomboy ◽  
Douglas Cleary ◽  
Seth Wagner ◽  
Yusef Mehta ◽  
Danielle Kennedy ◽  
...  

Dwindling supplies of natural concrete aggregates, the cost of landfilling construction waste, and interest in sustainable design have increased the demand for recycled concrete aggregates (RCA) in new portland cement concrete mixtures. RCA repurposes waste material to provide useful ingredients for new construction applications. However, RCA can reduce the performance of the concrete. This study investigated the effectiveness of ternary blended binders, mixtures containing portland cement and two different supplementary cementitious materials, at mitigating performance losses of concrete mixtures with RCA materials. Concrete mixtures with different ternary binder combinations were batched with four recycled concrete aggregate materials. For the materials used, the study found that a blend of portland cement, Class C fly ash, and blast furnace slag produced the highest strength of ternary binder. At 50% replacement of virgin aggregates and ternary blended binder, some specimens showed comparable mechanical performance to a control mix of only portland cement as a binder and no RCA substitution. This study demonstrates that even at 50% RCA replacement, using the appropriate ternary binder can create a concrete mixture that performs similarly to a plain portland cement concrete without RCA, with the added benefit of being environmentally beneficial.


Author(s):  
David W. Mokarem ◽  
Richard E. Weyers ◽  
D. Stephen Lane

During its service life, concrete experiences volume changes. One of the types of deformation experienced by concrete is shrinkage. There are four main types of shrinkage associated with concrete: plastic, autogenous, carbonation, and drying shrinkage. The volume changes in concrete from shrinkage can lead to the cracking of the concrete. In the case of reinforced concrete, cracks in the cover concrete provide a direct path for chloride ions to reach and corrode the reinforcing steel. The development of concrete drying-shrinkage performance specifications with an associated test procedure was assessed for concrete mixtures purchased by the Virginia Department of Transportation (VDOT). Five existing shrinkage-prediction models were also assessed to determine the accuracy and precision of each model as it pertains to the VDOT mixtures used in this study. The five models are the ACI 209 Code model, CEB90 Code model, Bazant B3 model, Gardner–Lockman model, and Sakata model. The percentage length change limits for the portland cement concrete mixtures were found to be 0.0300% at 28 days and 0.0400% at 90 days. The CEB90 Code model was judged as the best prediction model for the VDOT portland cement concrete mixtures.


1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


Sign in / Sign up

Export Citation Format

Share Document