Short-fibre thermoset composites

Author(s):  
G Caprino
2006 ◽  
Vol 43 (10) ◽  
pp. 505-519 ◽  
Author(s):  
Fernando Adrián Lasagni ◽  
Hans Peter Degischer ◽  
Maria Papakyriacou

Author(s):  
Francisco Maciel Monticeli ◽  
Ana Karoline dos Reis ◽  
Roberta Motta Neves ◽  
Luis Felipe de Paula Santos ◽  
Edson Cocchieri Botelho ◽  
...  

The thermoplastic and thermoset laminates reinforced with different fibers generate variations in the laminated composite mechanical behavior. This work aims to analyze thermoplastic and thermoset composites creep behavior with a reduced number of experiments, applying curve-fitting analytical models (Weibull and Findley) and statistical approach (ANOVA, F-test, and SRM) in order to describe creep behavior. Creep tests were carried out using a design of experiments to define parameter levels, aiming to reduce the number of the experiments, keeping reliability relevance. The temperature shows a stronger influence of creep deformation compared with the use of distinct materials. Thermoplastic matrices seem to be more sensitive to deformation, decreasing the reinforcement contribution. On the other hand, the creep resistance of the thermoset matrix conducts a significant contribution of strain behavior for the reinforcement used. The Findley model showed a temperature-dependent response. While, the Weibull-based model exhibits temperature and material-dependence, ensuring a greater sensitivity range of the parameters applied, an essential factor for a more realistic method description.


Author(s):  
Ikra Iftekhar Shuvo ◽  
Md. Saiful Hoque ◽  
Md. Shadhin ◽  
Lovely K. M. Khandakar

1995 ◽  
Vol 4 (1) ◽  
pp. 096369359500400
Author(s):  
T.D. Papathanasiou

The predictions of the Halpin equation concerning the effect of fibre volume fraction and fibre aspect ratio on the effective tensile modulus of uniaxially aligned short-fibre composites are compared with computational experiments on three-dimensional, multiparticle composite samples. The method of boundary elements is used to model the mechanical behaviour of composite specimens consisting of up to 40 discrete aligned fibres randomly dispersed in an elastic matrix. Statistical averages of computational results relating the effective tensile modulus to the aspect ratio and volume fraction of the fibres are found to agree very well with the predictions of the Halpin equation for fibre aspect ratio up to 10 and fibre volume fractions up to 20%. Computational results seem to indicate that the predictions of the Halpin equation fall bellow those of micro-mechanical models at higher volume fractions.


Wear ◽  
1996 ◽  
Vol 195 (1-2) ◽  
pp. 106-111 ◽  
Author(s):  
J.-Q. Jiang ◽  
R.-S. Tan

Sign in / Sign up

Export Citation Format

Share Document