thermoset composites
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 96)

H-INDEX

28
(FIVE YEARS 6)

2022 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Mamadou Ndiaye ◽  
Peter Myler ◽  
Baljinder K. Kandola

In thermoplastic composites, the polymeric matrix upon exposure to heat may melt, decompose and deform prior to burning, as opposed to the char-forming matrices of thermoset composites, which retain their shape until reaching a temperature at which decomposition and ignition occur. In this work, a theoretical and numerical heat transfer model to simulate temperature variations during the melting, decomposition and early stages of burning of commonly used thermoplastic matrices is proposed. The scenario includes exposing polymeric slabs to one-sided radiant heat in a cone calorimeter with heat fluxes ranging from 15 to 35 kW/m2. A one-dimensional finite difference method based on the Stefan approach involving phase-changing and moving boundary conditions was developed by considering convective and radiative heat transfer at the exposed side of the polymer samples. The polymers chosen to experimentally validate the simulated results included polypropylene (PP), polyester (PET), and polyamide 6 (PA6). The predicted results match well with the experimental results.


2022 ◽  
pp. 127-142
Author(s):  
Muhammad Khusairy Bin Bakri ◽  
Md Rezaur Rahman ◽  
Mohammed Mahbubul Matin
Keyword(s):  

2022 ◽  
pp. 373-400
Author(s):  
Shania Zehra Naqvi ◽  
Janakarajan Ramkumar ◽  
Kamal K. Kar

Author(s):  
Sagar P. Shah ◽  
Sagar U. Patil ◽  
Christopher J. Hansen ◽  
Gregory M. Odegard ◽  
Marianna Maiarù

2021 ◽  
Author(s):  
Sagar P. Shah ◽  
Sagar U. Patil ◽  
Christopher J. Hansen ◽  
Gregory M. Odegard ◽  
Marianna Maiaru

A computational process modeling framework, informed by accurate material characterization, is presented for virtual manufacturing of wind energy thermoset composites. Process modeling simulations of composite microstructures are carried out to predict in-situ matrix property evolution and performance-altering residual stress generation. To achieve this, comprehensive material characterization effort is carried out. A novel material property dataset for a widely-used wind energy thermoset system is generated as a function of the temperature and curing. Informed by these material properties, the ability of the process model to reliably estimate manufacturing-induced residual stresses is highlighted. For a prescribed cure cycle, in-situ elastic modulus evolution, chemical and thermal strains, and random fiber distribution are shown to significantly influence residual stress generation. The results also show that a full process modeling analysis that includes the complete cure cycle (instead of the standard approach of just considering post-processing cool-down) is necessary to accurately predict manufacturing-induced residual stresses.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3444
Author(s):  
Hamid Kaddami ◽  
Oumaima Hafs ◽  
Taha EL Assimi ◽  
Lamia Boulafrouh ◽  
El-Houssaine Ablouh ◽  
...  

In this work, laminated polyester thermoset composites based on palm tree fibers extracted from palms leaflets and glass mats fibers were manufactured to develop hybrid compositions with good mechanical properties; the mixture of fibers was elaborated to not exceed 25 vol.%. Samples were prepared with a resin transfer molding (RTM) method and mechanically characterized using tensile and flexural, hardness, and impact tests, and ultrasonic waves as a non-destructive technique. The water sorption of these composite materials was carried out in addition to solar irradiation aging for approximately 300 days to predict the applicability and the long-term performance of the manufactured composites. Results have shown that the use of glass fibers significantly increased all properties; however, an optimum combination of the mixture could be interesting and could be developed with less glass sheet and more natural fibers, which is the goal of this study. On the other hand, exposure to natural sunlight deteriorated the mechanical resistance of the neat resin after only 60 days, while the composites kept high mechanical resistance for 365 days of exposure.


Sign in / Sign up

Export Citation Format

Share Document