Estimation of liquefaction potential using dynamic penetration with pore pressure transducer

Author(s):  
S Sawada
2013 ◽  
Vol 275-277 ◽  
pp. 2620-2623
Author(s):  
Qing Xu ◽  
Fei Kang ◽  
Jun Jie Li

Evaluation of liquefaction potential of soils is important in geotechnical earthquake engineering. Significant phenomena of gravelly soil liquefaction were reported in 2008 Wenchuan earthquake. Thus, further studies on the liquefaction potential of gravelly soil are needed. This paper investigates the potential of artificial neural networks-based approach to assess the liquefaction potential of gravelly soils form field data of dynamic penetration test. The success rates for occurrence and non-occurrence of liquefaction cases both are 100%. The study suggests that neural networks can successfully model the complex relationship between seismic parameters, soil parameters, and the liquefaction potential of gravelly soils.


2007 ◽  
Vol 44 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Dawn A Shuttle ◽  
John Cunning

Silt tailings (slimes) are difficult materials to test in that, like sands, it is extremely difficult to obtain undisturbed samples and subsequently re-establish them in a triaxial cell for element testing in a laboratory in anything approaching their in situ condition. Evaluation of silt tailing behaviour has to depend on in situ tests, and the piezocone (CPTu) in particular. However, CPTs in silt generate substantial excess pore pressure and there is no established methodology to evaluate the measured responses in terms of soil properties, as drained sand-based CPT interpretation is inapplicable. A case history of particularly loose silt tailings is reported in which the National Center for Earthquake Engineering Research (NCEER) liquefaction assessment method would lead to uncertainty in the liquefaction potential. However, the extremely high CPTu excess pore pressure ratio, Bq, and low dimensionless CPT resistance, Qp, at this site indicates liquefaction is likely occurring during pushing of the CPT. Detailed finite element simulations of the CPT using a critical state model provided an effective stress framework to evaluate the in situ state parameter of the silt from the measured CPT data. This framework shows that the group of dimensionless CPT variables Q(1 – Bq) + 1 is fundamental for the evaluation of undrained response during CPT sounding. And, despite the high silt content, the interpretation indicates that the tailings are indeed liquefiable.Key words: liquefaction, CPT, silt, finite element, critical state.


2007 ◽  
Vol 345-346 ◽  
pp. 1157-1160 ◽  
Author(s):  
Jung Hwa Hong ◽  
Young Hwan Park

Experimental measurement of pore pressure generation in lacunocanalicular network of trabeculae is never measured, although the characteristics could be important for bone remodeling. In this study, the pore pressure generation in micro-trabecular specimens within the elastic range was measured in vitro using a specially designed micro-experimental setup and a MEMS based micro-pressure transducer. Then, a quasi-static loading (9㎛/min) was applied up to the strain of 0.4 % with measuring pore pressure generations in the undrained and drained conditions. 49.2 ± 4.45 KPa of pore pressure generation at the 0.4% strain was found in the undrained condition. In contrast, no pore pressure generation was measured in the drained condition. The result could let us know the amount of a possible maximum pore pressure generation in lacunocanalicular network of trabeculae within the elastic range.


1990 ◽  
Vol 27 (3) ◽  
pp. 320-329 ◽  
Author(s):  
K. T. Law ◽  
Y. L. Cao ◽  
G. N. He

An energy method for assessing liquefaction potential of granular soils was developed based on laboratory tests and observational data obtained in past major earthquakes. Cyclic triaxial and cyclic simple shear tests were conducted and the results show that a unique relation exists between the dissipated energy during cyclic load and the excess pore pressure that eventually led to liquefaction failure. This unique relation has been combined with an energy attenuation equation to develop a criterion for defining the liquefaction potential of a site. Parameters for the criterion were evaluated from 136 sites involved in 13 major earthquakes over the world. A comparison was made between the energy method and the commonly used stress method. The energy method was found to be simpler to apply and more reliable. Key words: energy, earthquake, liquefaction potential, standard penetration test, laboratory cyclic test, excess pore pressure, granular soils, case records.


1975 ◽  
Vol 12 (2) ◽  
pp. 235-261 ◽  
Author(s):  
Hari K. Mittal ◽  
Norbert R. Morgenstern

Tailings dams differ from conventional earthfill structures in that much more time is available to optimize design since their construction is extended over a longer period. Laboratory data are presented on a variety of tailings sands which indicate that they are relatively strong and incompressible. Poor performance is likely to result from inadequate seepage control and instability due to liquefaction. In order to take advantage of opportunities for ongoing design, in situ permeability and density monitoring is needed together with pore pressure measurements. An infiltration test for the determination of permeability above the water table is proposed. In situ density determinations are made by driving a nuclear probe into the sands. The latter technique offers considerable promise for evaluating liquefaction potential of natural and fill deposits. Field experience is used to illustrate the application of the techniques.


Author(s):  
Titi Sui ◽  
Jisheng Zhang ◽  
Jinhai Zheng ◽  
Chi Zhang

A 3D integrated model is developed to study wave-induced seabed response and liquefaction potential around square pile foundation. While a Boussinesq wave mode (FUNWAVE) is used to simulate the wave-pile interaction, a seabed mode (WINBED) based on Biot’s poro-elastic theory is solved for the seabed deformation, effective stresses and pore water pressure in soil. After verified with previous model and experimental works, this integrated model is applied to investigate the wave-induced seabed response and liquefaction potential in the vicinity of square pile foundation. The numerical results indicate that wave-induced pore pressure reduces rapidly with an increasing seabed depth, and the maximum pore pressure and largest liquefaction potential can be identified in front of the square pile foundation. It is also found that the phenomenon of liquefaction may occur inside the seabed soil while the upper layer remains un-liquefied.


1990 ◽  
Vol 13 (3) ◽  
pp. 164 ◽  
Author(s):  
PC Knodel ◽  
BL Kutter ◽  
N Sathialingam ◽  
LR Herrmann

Sign in / Sign up

Export Citation Format

Share Document