On Modelling the Hydrodynamic Behaviour of SWATH Vessels

1991 ◽  
pp. 345-367
1986 ◽  
Vol 51 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Andrzej Gierczycki ◽  
Vladimír Staněk ◽  
Petr Vychodil ◽  
Vladimír Jiřičný ◽  
Jerzy Pikoń ◽  
...  

An approach utilizing the automodel properties in describing the hydrodynamic behaviour of counter-current columns has been extended to regularly stacked beds. Two new kinds of the packing have been investigated: The so-called K-packing, developed in the German Democratic Republic and the Cellular packing, developed in Poland. The results of experiments have been presented in the form of plots of the normalized liquid hold-up, hp, versus the normalized liquid velocity, Ql, and two empirical correlations. A comparison with previous results with randomly packed counter-current trickle bed columns has also been made.


Author(s):  
Elango Natarajan ◽  
Lídio Inácio Freitas ◽  
Goh Rui Chang ◽  
Ammar Abdulaziz Majeed Al-Talib ◽  
C.S. Hassan ◽  
...  

2021 ◽  
Author(s):  
Richard Blythman ◽  
Sajad Alimohammadi ◽  
Nicholas Jeffers ◽  
Darina B. Murray ◽  
Tim Persoons

Abstract While numerous applied studies have successfully demonstrated the feasibility of unsteady cooling solutions, a consensus has yet to be reached on the local instantaneous conditions that result in heat transfer enhancement. The current work aims to experimentally validate a recent analytical solution (on a local time-dependent basis) for the common flow condition of a fully-developed incompressible pulsating flow in a uniformly-heated vessel. The experimental setup is found to approximate the ideal constant heat flux boundary condition well, especially for the decoupled unsteady scenario where the amplitude of the most significant secondary contributions (capacitance and lateral conduction) amounts to 1.2% and 0.2% of the generated heat flux, respectively. Overall, the experimental measurements for temperature and heat flux oscillations are found to coincide well with a recent analytical solution to the energy equation by the authors. Furthermore, local time-dependent heat flux enhancements and degradations are observed to be qualitatively similar to those of wall shear stress from a previous study, suggesting that the thermal performance is indeed influenced by hydrodynamic behaviour.


2002 ◽  
Vol 4 (4) ◽  
pp. 281-295 ◽  
Author(s):  
Jose González-García ◽  
Angel Frías-Ferrer ◽  
Vicente Montiel ◽  
Antonio Aldaz ◽  
Juan A. Conesa

This paper analyses the hydrodynamic behaviour of electrochemical reactors by simulating stimulus–response experiments. The experiments were performed with a simple experimental arrangement to generate data (Residence Time Distribution (RTD) curves) from electrolytic conductivity measurements. The multiparametric model proposed and the Matlab program developed allow the study of electrochemical reactors using three-dimensional electrodes, providing values of characteristic parameters of the materials, such as porosity and compressibility. The study of the reactor also permits modelling of the electrochemical reactions that will be produced inside it.


2018 ◽  
Vol 482 (1) ◽  
pp. 75-92 ◽  
Author(s):  
Ferenc Fedor ◽  
Zoltán Máthé ◽  
Péter Ács ◽  
Péter Koroncz

AbstractBoda Claystone is a very tight clayey rock with extreme low porosity and permeability, nano-size pores and small amounts of swelling clays. Due to this character it is ideal as a potential host rock for research into the possibilities of high-level waste deposition in geological formation. Though the research started more than 30 years ago, the genesis, the geotectonic history of the Boda Claystone Formation (BCF) and the geology of surrounding areas has only been sketched out recently. On the basis of research of the past few years the process of sedimentation of different blocks was able to be reconstructed. Equipment and methodological developments were needed for the investigation of reservoir geological and hydrodynamic behaviour of this rock, which began in the early 2000s. Based on them the pore structure and reservoir could be characterized in detail. Only theoretical approaches were available for the chemical composition of free porewater. Traditional water-extracting methods were not adaptable because of excessively low porosity and nano-scale pore size distribution. Hence, new ways have to be found for getting enough water for analysis. These new results of BCF research help to prepare more sophisticated and directed experiments, in which there is a great interest internationally.


1995 ◽  
Vol 17 (4) ◽  
pp. 233-243 ◽  
Author(s):  
S.A. Sannasiraj ◽  
V. Sundar ◽  
R. Sundaravadivelu

Author(s):  
Charles Zimmermann ◽  
Richard James ◽  
Blaise Seguin ◽  
Mattias Lynch

The BP operated Greater Plutonio field development offshore Angola comprises a spread-moored FPSO in 1,300 m water depth, serving as a hub processing the fluids produced from or injected into the subsea wells. The selected riser system is a riser tower tensioned by a steel buoyancy tank at its top end and distributed foam buoyancy along a central structural tubular. The riser bundle is asymmetric in cross-section and this paper presents the work performed to determine the specific hydrodynamic characteristics of the design. Both basin tests and CFD analysis results are presented with discussion on some specific hydrodynamic issues: vortex-induced vibration (VIV) of the global riser tower system, VIV of individual risers, and the dynamic stability of the global system (i.e. galloping). Finally, guidelines for the assessment of the hydrodynamic behaviour of such system geometries are proposed. The results of this paper demonstrate that the Greater Plutonio riser bundle represents an effective solution in term of hydrodynamic behaviour and is not sensitive to VIV fatigue or galloping.


Sign in / Sign up

Export Citation Format

Share Document