Salinity Soil Tests and Interpretation

Keyword(s):  
Geoderma ◽  
2021 ◽  
Vol 398 ◽  
pp. 115094
Author(s):  
G.J. Smith ◽  
R.W. McDowell ◽  
K. Daly ◽  
D. Ó hUallacháin ◽  
L.M. Condron ◽  
...  

Author(s):  
Kristian Krabbenhoft ◽  
J. Wang

A new stress-strain relation capable of reproducing the entire stress-strain range of typical soil tests is presented. The new relation involves a total of five parameters, four of which can be inferred directly from typical test data. The fifth parameter is a fitting parameter with a relatively narrow range. The capabilities of the new relation is demonstrated by the application to various clay and sand data sets.


2020 ◽  
Vol 51 (1) ◽  
pp. 03-04
Author(s):  
Leon Kirk

Eutrophication is an overall contamination issue, when the directresource contamination is proficiently unnatural; contamination load from non-point foundation has the expanding extent in the complete burden. The investigation on non-point foundation contamination is a significant perspective in the exploration on water condition contamination. The nonpoint source contamination, highlighted by broad inclusion, dynamic intricacy and troublesome evaluation of precise spatial area and release degree, is a solution and troublesome concern for the investigation of water condition contamination. In this magazine, an improved fare co-efficient strategy is projected to gauge non-point foundation contamination load in watersheds, same thinking about the impacts of precipitation and the decrease of toxin during the time spent vehicle. The measures of downpour and overflow are enormous in soaked years, so the non-point foundation contamination heaps created are huge too in different years, the non-point foundation contamination loads are fewer a direct result of less precipitation in typical water years. Non-point resource contamination factors are investigated, for example, precipitation, land use, landscape, geography and soil P speciation in farmland soil tests in forest soil tests, and in orchardland soil tests.


1990 ◽  
Vol 30 (4) ◽  
pp. 557 ◽  
Author(s):  
JD Armour ◽  
AD Robson ◽  
GSP Ritchie

Navy beans (Phaseolus vulgaris cv. Gallaroy) were grown with 7 rates of zinc (Zn) in a Zn-deficient gravelly sandy loam in a glasshouse experiment. The plant shoots were harvested 31 days after sowing and the Zn concentration in each of 4 plant parts (YL, young leaf; YOL, young open leaf; YFEL, youngest fully expanded leaf; and whole shoots) was related to the fresh weight of the shoots. The critical Zn concentrations (mgtkg) in the plant parts determined by the 2 intersecting straight lines model were 21.1 for YL (r2 = 0.66), 17.1 for YOL (r2 = 0.83), 10.6 for YFEL (r2 = 0.91) and 12.5 for the whole tops (r2 = 0.88). The YFEL was selected as an appropriate diagnostic tissue because it is readily identifiable in the field and had the highest 1.2 with fresh weight. In a second glasshouse experiment, the critical Zn concentration in the YFEL and 5 soil tests were evaluated for their ability to predict the Zn status of navy beans. There were 13 soils from sands to clays with a wide range of chemical properties. The soil tests were 0.1 mol/L HCl, DTPA, EDTA, dilute CaCl2 and soil solution Zn. The concentration of Zn in the YFEL correctly predicted Zn deficiency or adequacy in about 77% of samples. The results from both experiments showed that a critical Zn concentration of 10-11 mg/kg in the YFEL can be used to diagnose the Zn status of Gallaroy navy beans. It was not possible to recommend a single soil test for prediction of the relative yield of navy beans. A combination of quantity (HCl, EDTA, DTPA) and intensity (soil solution, 0.002 mol/L CaCl2, 0.01 mol/L CaCl2) parameters were able to explain most of the variation in the Zn concentration of the YFEL, a more sensitive measure of nutrient availability than relative yield. EDTA-Zn in combination with 0.01 mol/L CaCl2-Zn explained 90% of the variation in the Zn concentration in the YFEL, while HCl- or DTPA-Zn and 0.01 mol/L CaCl2 explained about 80% of the variation. As soil solution Zn was significantly correlated with 0.002 and 0.01 mol/L CaCl2-Zn (r = 0.75, P<0.01; r = 0.62, P<0.05, respectively), CaCl2-Zn may be used as a more convenient measure of Zn intensity than soil solution Zn.


2003 ◽  
Vol 83 (4) ◽  
pp. 443-449 ◽  
Author(s):  
R. H. McKenzie ◽  
E. Bremer

Soil tests for available P may not be accurate because they do not measure the appropriate P fraction in soil. A sequential extraction technique (modified Hedley method) was used to determine if soil test P methods were accurately assessing available pools and if predictions of fertilizer response could be improved by the inclusion of other soil P fractions. A total of 145 soils were analyzed from field P fertilizer experiments conducted across Alberta from 1991 to 1993. Inorganic P (Pi) removed by extraction with an anion-exchange resin (resin P) was highly correlated with the Olsen and Kelowna-type soil test P methods and had a similar relationship with P fertilizer response. No appreciable improvement in the fit of available P with P fertilizer response was achieved by including any of the less available P fractions in the regression of P fertilizer response with available P. Little Pi was extractable in alkaline solutions (bicarbonate and NaOH), particularly in soils from the Brown and Dark Brown soil zones. Alkaline fractions were the most closely related to resin P, but the relationship depended on soil zone. Inorganic P extractable in dilute HCl was most strongly correlated with soil pH, reflecting accumulation in calcareous soils, while Pi extractable in concentrated acids (HCl and H2SO4) was most strongly correlated with clay concentration. A positive but weak relationship as observed between these fractions and resin P. Complete fractionation of soil P confirmed that soil test P methods were assessing exchangeable, plant-available P. Key words: Hedley phosphorus fractionation, resin, Olsen, Kelowna


Sign in / Sign up

Export Citation Format

Share Document