An adaptive sequential maintenance decision for a deteriorating system with covariates

Author(s):  
E Khoury ◽  
E Deloux ◽  
A Grall ◽  
C Bérenguer
Author(s):  
Guang Zou ◽  
Kian Banisoleiman ◽  
Arturo González

A challenge in marine and offshore engineering is structural integrity management (SIM) of assets such as ships, offshore structures, mooring systems, etc. Due to harsh marine environments, fatigue cracking and corrosion present persistent threats to structural integrity. SIM for such assets is complicated because of a very large number of rewelded plates and joints, for which condition inspections and maintenance are difficult and expensive tasks. Marine SIM needs to take into account uncertainty in material properties, loading characteristics, fatigue models, detection capacities of inspection methods, etc. Optimising inspection and maintenance strategies under uncertainty is therefore vital for effective SIM and cost reductions. This paper proposes a value of information (VoI) computation and Bayesian decision optimisation (BDO) approach to optimal maintenance planning of typical fatigue-prone structural systems under uncertainty. It is shown that the approach can yield optimal maintenance strategies reliably in various maintenance decision making problems or contexts, which are characterized by different cost ratios. It is also shown that there are decision making contexts where inspection information doesn’t add value, and condition based maintenance (CBM) is not cost-effective. The CBM strategy is optimal only in the decision making contexts where VoI > 0. The proposed approach overcomes the limitation of CBM strategy and highlights the importance of VoI computation (to confirm VoI > 0) before adopting inspections and CBM.


2021 ◽  
Vol 1 ◽  
pp. 2701-2710
Author(s):  
Julie Krogh Agergaard ◽  
Kristoffer Vandrup Sigsgaard ◽  
Niels Henrik Mortensen ◽  
Jingrui Ge ◽  
Kasper Barslund Hansen ◽  
...  

AbstractMaintenance decision making is an important part of managing the costs, effectiveness and risk of maintenance. One way to improve maintenance efficiency without affecting the risk picture is to group maintenance jobs. Literature includes many examples of algorithms for the grouping of maintenance activities. However, the data is not always available, and with increasing plant complexity comes increasingly complex decision requirements, making it difficult to leave the decision making up to algorithms.This paper suggests a framework for the standardisation of maintenance data as an aid for maintenance experts to make decisions on maintenance grouping. The standardisation improves the basis for decisions, giving an overview of true variance within the available data. The goal of the framework is to make it simpler to apply tacit knowledge and make right decisions.Applying the framework in a case study showed that groups can be identified and reconfigured and potential savings easily estimated when maintenance jobs are standardised. The case study enabled an estimated 7%-9% saved on the number of hours spent on the investigated jobs.


2021 ◽  
pp. 126663
Author(s):  
Yuanyuan Pan ◽  
Guoqiang Liu ◽  
Dong Tang ◽  
Dongdong Han ◽  
Xuanguo Li ◽  
...  

2010 ◽  
Vol 44-47 ◽  
pp. 2940-2944
Author(s):  
Qing He ◽  
Jian Ding Zhang

The complicated function relations are more prone to appear in the maintenance scheduling of steam-turbine generator unit. Many constrained conditions are often attendant with these function relations. In these situations, the traditional method often can not obtain the exact value. The genetic algorithm (GA), a kind of the heuristic algorithms, does not need the function own good analytic properties. In addition, as the operating unit of GA is the group, so it applies to the parallel computing process. In GA executive process, the offspring continually inherit the genes from the parents, so it is more prone to be involved in the local convergence. An improved genetic algorithm is proposed and used in the model of maintenance decision of turbine-generator unit under. The goal of the model is to seek to the rational maintenance scheduling of the generator unit, so as to minimize the sum of the maintenance expense, the loss of the profit on the generated energy, and the loss of the penalty. It is proved by the example that IGA is highly efficient.


Sign in / Sign up

Export Citation Format

Share Document