Stability analysis and optimum design of high and steep slope in a deep-concave open pit mine

2011 ◽  
pp. 581-585 ◽  
Author(s):  
M Cai ◽  
M Xie ◽  
J Wang ◽  
C Li ◽  
L Qiao ◽  
...  
2015 ◽  
Vol 777 ◽  
pp. 106-111 ◽  
Author(s):  
Zhen Hua Xie ◽  
Ran Yi Xie ◽  
Xiao Yue Lu

The stability of slope in open-pit affects the economic benefits and safety production of mining enterprises. From the two aspects of internal factors and external factors, this paper analyses the factors affecting the slope stability of open-pit, discusses the basic theory of slope stability analysis, and puts forward the criterion of slope stability based on the safety coefficient. The limit equilibrium method is chosen to analyze the stability of the high and steep slope of open-pit in this paper, and the SLIDE software is used for numerical simulation according to the actual slope model of certain open-pit. The simulation results show that the slope safety coefficient of the instance is 1.01, which is unstable slope. When the number of the slope blocks is more than 40, the safety coefficient tend to be stable. Blasting vibration has a great influence on slope stability. The results of slope stability analysis provide a scientific guidance for the prevention and control of the slope instability.


Author(s):  
Guiping Chang ◽  
Ming Zhu ◽  
Rui Tang ◽  
Zhiyun Tian ◽  
Lixin Ai ◽  
...  

2010 ◽  
pp. 933-939
Author(s):  
Lehua Wang ◽  
Jianlin Li ◽  
Huafeng Deng ◽  
Mei Han ◽  
Qiufeng Huang

2018 ◽  
Vol 1065 ◽  
pp. 252002 ◽  
Author(s):  
Ligang Wang ◽  
Lewen Yu ◽  
Yuansheng Zhang ◽  
Da Zhang ◽  
Zhigang Tao ◽  
...  

2011 ◽  
Vol 84-85 ◽  
pp. 729-732 ◽  
Author(s):  
Jun Guo ◽  
De Qing Gan ◽  
Yu Zhang ◽  
Wei Hang Zhang

The paper analyzed major factors that influence the stability of open-pit slope and established the GM (1, N) model based on the program of Xingshan strip mine, which provided an effective method for evaluating the slope stability.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhiyu Zhang ◽  
Qingyun Qian ◽  
Jianguo Wang ◽  
Haoshan Liu ◽  
Ke Liang ◽  
...  

In order to prevent rockfall caused by open-pit blasting on the high and steep slope and ensure that the passive protective net structure has sufficient impact resistance, the mechanism of blasting flyrock causing rockfall is analyzed by using ANSYS/AUTODYN to establish the model of rockfall and passive protective net; at the same time, the influences of protective net size, rockfall kinetic energy, and rockfall size to the protective effect were also studied. The results show that under the condition of the same rockfall kinetic energy and rockfall size, the larger the size of the protective net, the longer the buffer time, and the impact force that net can sustain is greater; by assuming the protective net size and rockfall size to be a constant, the greater the rockfall kinetic energy, the less the interaction time between rock and net, and the greater the impulse force that net can suffer; similarly, by keeping the protective net size and the kinetic energy of rockfall to be a constant, it is found that the larger the size of the rockfall, the larger the interaction area and longer interaction time with the net, and the less net will be disrupted; the protective net used in the mine can intercept the rockfall caused by flyrock in blasting process effectively and ensure the safety of villager at the foot of the mountain.


Sign in / Sign up

Export Citation Format

Share Document