General Jump Conditions

2012 ◽  
pp. 5-16
Keyword(s):  
1994 ◽  
Vol 35 (6) ◽  
pp. 2878-2901 ◽  
Author(s):  
G. Alì ◽  
V. Romano

2004 ◽  
Vol 28 (3) ◽  
pp. 381-392 ◽  
Author(s):  
C. Michaut ◽  
C. Stehl� ◽  
S. Leygnac ◽  
T. Lanz ◽  
L. Boireau
Keyword(s):  

VLSI Design ◽  
1998 ◽  
Vol 6 (1-4) ◽  
pp. 379-384 ◽  
Author(s):  
Ganesh Rajagopalan ◽  
Vadali Mahadev ◽  
Timothy S. Cale

We discuss our approach to using the Riemann problem to compute surface profile evolution during the simulation of deposition, etch and reflow processes. Each pair of segments which represents the surface is processed sequentially. For cases in which both segments are the same material, the Riemann problem is solved. For cases in which the two segments are different materials, two Riemann problems are solved. The material boundary is treated as the right segment for the left material and as the left segment for the right material. The critical equations for the analyses are the characteristics of the Riemann problem and the ‘jump conditions’ which represent continuity of the surface. Examples are presented to demonstrate selected situations. One limitation of the approach is that the velocity of the surface is not known as a function of the surface angle. Rather, it is known for the angles of the left and right segments. The rate as a function of angle must be assumed for the explicit integration procedure used. Numerical implementation is briefly discussed.


2017 ◽  
Vol 27 (10) ◽  
pp. 2259-2267 ◽  
Author(s):  
Mustafa Turkyilmazoglu

Purpose This paper aims to working out exact solutions for the boundary layer flow of some nanofluids over porous stretching/shrinking surfaces with different configurations. To serve to this aim, five types of nanoparticles together with the water as base fluid are under consideration, namely, Ag, Cu, CuO, Al2O3 and TiO2. Design/methodology/approach The physical flow is affected by the presence of velocity slip as well as temperature jump conditions. Findings The knowledge on the influences of nanoparticle volume fraction on the practically significant parameters, such as the skin friction and the rate of heat transfer, for the above considered nanofluids, is easy to gain from the extracted explicit formulas. Originality/value Particularly, formulas clearly point that the heat transfer rate is not only dependent on the thermal conductivity of the material but it also highly relies on the heat capacitance as well as the density of the nanofluid under consideration.


Author(s):  
Sarah C. Burnett ◽  
Kevin G. Honnell ◽  
Scott D. Ramsey ◽  
Robert L. Singleton

The Noh verification test problem is extended beyond the commonly studied ideal gamma-law gas to more realistic equations of state (EOSs) including the stiff gas, the Noble-Abel gas, and the Carnahan–Starling EOS for hard-sphere fluids. Self-similarity methods are used to solve the Euler compressible flow equations, which, in combination with the Rankine–Hugoniot jump conditions, provide a tractable general solution. This solution can be applied to fluids with EOSs that meet criterion such as it being a convex function and having a corresponding bulk modulus. For the planar case, the solution can be applied to shocks of arbitrary strength, but for the cylindrical and spherical geometries, it is required that the analysis be restricted to strong shocks. The exact solutions are used to perform a variety of quantitative code verification studies of the Los Alamos National Laboratory Lagrangian hydrocode free Lagrangian (FLAG).


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
A. Arikoglu ◽  
G. Komurgoz ◽  
I. Ozkol ◽  
A. Y. Gunes

The present work examines the effects of temperature and velocity jump conditions on heat transfer, fluid flow, and entropy generation. As the physical model, the axially symmetrical steady flow of a Newtonian ambient fluid over a single rotating disk is chosen. The related nonlinear governing equations for flow and thermal fields are reduced to ordinary differential equations by applying so-called classical approach, which was first introduced by von Karman. Instead of a numerical method, a recently developed popular semi numerical-analytical technique; differential transform method is employed to solve the reduced governing equations under the assumptions of velocity and thermal jump conditions on the disk surface. The combined effects of the velocity slip and temperature jump on the thermal and flow fields are investigated in great detail for different values of the nondimensional field parameters. In order to evaluate the efficiency of such rotating fluidic system, the entropy generation equation is derived and nondimensionalized. Additionally, special attention has been given to entropy generation, its characteristic and dependency on various parameters, i.e., group parameter, Kn and Re numbers, etc. It is observed that thermal and velocity jump strongly reduce the magnitude of entropy generation throughout the flow domain. As a result, the efficiency of the related physical system increases. A noticeable objective of this study is to give an open form solution of nonlinear field equations. The reduced recurative form of the governing equations presented gives the reader an opportunity to see the solution in open series form.


2018 ◽  
Vol 27 (10) ◽  
pp. 1442-1450 ◽  
Author(s):  
Yasser Khalili ◽  
Nematollah Kadkhoda ◽  
Dumitru Baleanu

Sign in / Sign up

Export Citation Format

Share Document