An Investigation of the Problem of Multiple Scattering from Seeding Particles in Laser Sheet Studies of Shock Induced Gas Mixing

2016 ◽  
pp. 241-248
2003 ◽  
Vol 21 (3) ◽  
pp. 411-418 ◽  
Author(s):  
D.A. HOLDER ◽  
A.V. SMITH ◽  
C. J. BARTON ◽  
D.L. YOUNGS

This article reports on the latest experiments in the series of Richtmyer–Meshkov instability (RMI) shock-tube experiments. Previous work described a double-bump experiment that evidenced some degree of unrepeatability. The present work features an enlarged perturbation introduced to improve repeatability. In common with the previous work, the experiments were conducted at shock Mach number 1.26 (70 kPa overpressure), using the Atomic Weapons Establishment 200 × 100 mm shock tube with a three-zone test cell arrangement of air/sulphur hexafluoride/air. The sulphur hexafluoride gas (SF6) was chosen for its high density (5.1 relative to air) providing an Atwood number of 0.67. Gas separation was by means of microfilm membranes, supported by fine wire meshes. A double-bump perturbation of two-dimensional geometry was superimposed on the downstream membrane representing a 0.6% addition to the dense gas volume. Visualization of the turbulent gas mixing was by laser sheet illumination of the seeded SF6gas using a copper vapor laser pulsing at 12.5 kHz. Mie scattered light was recorded using a 35-mm rotating drum camera to capture a sequence of 50 images per experiment. Sample experimental results shown alongside corresponding three-dimensional hydrocode calculations highlight the problems in both analysis and comparison caused by multiple scattering arising from the necessary use of a high seeding concentration. Included is a demonstration of the effectiveness of introducing into the hydrocode a Monte Carlo-based simulation of the multiple scattering process. The results so derived yield greatly improved qualitative agreement with the experimental images. Quantitative analysis took the form of deriving relative intensity data from line-outs through experimental images and their code equivalents. A comparison revealed substantial agreement on major features.


Author(s):  
S. Golladay

The theory of multiple scattering has been worked out by Groves and comparisons have been made between predicted and observed signals for thick specimens observed in a STEM under conditions where phase contrast effects are unimportant. Independent measurements of the collection efficiencies of the two STEM detectors, calculations of the ratio σe/σi = R, where σe, σi are the total cross sections for elastic and inelastic scattering respectively, and a model of the unknown mass distribution are needed for these comparisons. In this paper an extension of this work will be described which allows the determination of the required efficiencies, R, and the unknown mass distribution from the data without additional measurements or models. Essential to the analysis is the fact that in a STEM two or more signal measurements can be made simultaneously at each image point.


Author(s):  
C P Scott ◽  
A J Craven ◽  
C J Gilmore ◽  
A W Bowen

The normal method of background subtraction in quantitative EELS analysis involves fitting an expression of the form I=AE-r to an energy window preceding the edge of interest; E is energy loss, A and r are fitting parameters. The calculated fit is then extrapolated under the edge, allowing the required signal to be extracted. In the case where the characteristic energy loss is small (E < 100eV), the background does not approximate to this simple form. One cause of this is multiple scattering. Even if the effects of multiple scattering are removed by deconvolution, it is not clear that the background from the recovered single scattering distribution follows this simple form, and, in any case, deconvolution can introduce artefacts.The above difficulties are particularly severe in the case of Al-Li alloys, where the Li K edge at ~52eV overlaps the Al L2,3 edge at ~72eV, and sharp plasmon peaks occur at intervals of ~15eV in the low loss region. An alternative background fitting technique, based on the work of Zanchi et al, has been tested on spectra taken from pure Al films, with a view to extending the analysis to Al-Li alloys.


1986 ◽  
Vol 47 (C8) ◽  
pp. C8-589-C8-592
Author(s):  
N. BINSTED ◽  
S. L. COOK ◽  
J. EVANS ◽  
R. J. PRICE ◽  
G. N. GREAVES

2007 ◽  
Vol 211 (S 1) ◽  
Author(s):  
H Proquitté ◽  
O Freiberger ◽  
S Yilmaz ◽  
H Hammer ◽  
G Schmalisch ◽  
...  
Keyword(s):  

1976 ◽  
Vol 118 (3) ◽  
pp. 539
Author(s):  
I.P. Bazarov
Keyword(s):  

2011 ◽  
Vol 181 (7) ◽  
pp. 681 ◽  
Author(s):  
V.B. Molodkin ◽  
A.P. Shpak ◽  
M.V. Kovalchuk ◽  
V.F. Machulin ◽  
V.L. Nosik
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document