Water quality assessment and control countermeasures of rural non-point source pollution: A case study on Xichong River

2014 ◽  
pp. 121-126
2013 ◽  
Vol 864-867 ◽  
pp. 1466-1469
Author(s):  
Li Hua Mao ◽  
Xue Mei Han

Wohushan reservoir is an important drinking water source for south urban area of Jinan, however, the water quality of Wohushan reservoir is not safe, and agricultural non-point source pollution is the main reason that caused the water quality deteriorate. This paper analysed the sources of non-point source pollution through datum of population and agriculture production and other economic and social activities in Wohushan reservoir area. The water quality effect of domestic sewage, house refuse, live stock dung, and unreasonable use of fertilizer and pesticide were discussed as emphasis. Further more, the factors of the non-point source pollution were summarized according to policy, statute, economic, technology etc. At last, countermeasures of non-point source pollution prevention and control were proposed based on the source and pathway control of contaminates including perfect law system, strengthen policy guidance, increase funding, use fertilizer and pesticide reasonably, popularize biotechnology and methane tank, carry out efficient eco-agriculture construction, etc.


Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1387
Author(s):  
Xuekai Chen ◽  
Guojian He ◽  
Xiaobo Liu ◽  
Bogen Li ◽  
Wenqi Peng ◽  
...  

The prevention and control of non-point source pollution is an important link in managing basin water quality and is an important factor governing the environmental protection of watershed water in China over the next few decades. The control of non-point source pollution relies on the recognition of the amount, location, and influencing factors. The watershed nonpoint source pollution mechanism model is an effective method to address the issue. However, due to the complexity and randomness of non-point source pollution, both the development and application of the watershed water environment model have always focused on the accuracy and rationality of model parameters. In this pursuit, the present study envisaged the temporal and spatial heterogeneity of non-point source pollution caused by the complex underlying surface conditions of the watershed, and the insufficient coverage of hydrological and water quality monitoring stations. A refined watershed non-point source pollution simulation method, combining the Monte Carlo analytic hierarchy process (MCAHP) and the sub-watershed parameter transplantation method (SWPT), was established on the basis of the migration and transformation theory of the non-point source pollution, considering the index selection, watershed division, sub-watershed simulation, and parameter migration. Taking the Erhai Lake, a typical plateau lake in China, as the representative research object, the MCAHP method effectively reduced the uncertainty of the weights of the watershed division indexes compared to the traditional AHP method. Furthermore, compared to the traditional all watershed parameter simulation (AWPS) approach, the simulation accuracy was improved by 40% using the SWPT method, which is important for the prevention and control of non-point source pollution in large-scale watersheds with significant differences in climatic and topographic conditions. Based on the simulation results, the key factors affecting the load of the non-point source pollution in the Erhai watershed were identified. The results showed that the agricultural land in Erhai Lake contributed a majority of the load for several reasons, including the application of nitro phosphor complex fertilizer. Among the different soil types, paddy soil was responsible for the largest pollution load of total nitrogen and total phosphorus discharge into the lake. The zones with slopes of 0°‒18° were found to be the appropriate area for farming. Our study presents technical methods for the assessment, prevention, and control of non-point source pollution load in complex watersheds.


2011 ◽  
Vol 4 (5) ◽  
pp. 70-72
Author(s):  
Cristina Roşu ◽  
◽  
Ioana Piştea ◽  
Carmen Roba ◽  
Mihaela Mihu ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1955
Author(s):  
Mingxi Zhang ◽  
Guangzhi Rong ◽  
Aru Han ◽  
Dao Riao ◽  
Xingpeng Liu ◽  
...  

Land use change is an important driving force factor affecting the river water environment and directly affecting water quality. To analyze the impact of land use change on water quality change, this study first analyzed the land use change index of the study area. Then, the study area was divided into three subzones based on surface runoff. The relationship between the characteristics of land use change and the water quality grade was obtained by grey correlation analysis. The results showed that the land use types changed significantly in the study area since 2000, and water body and forest land were the two land types with the most significant changes. The transfer rate is cultivated field > forest land > construction land > grassland > unused land > water body. The entropy value of land use information is represented as Area I > Area III > Area II. The shift range of gravity center is forest land > grassland > water body > unused land > construction land > cultivated field. There is a strong correlation between land use change index and water quality, which can be improved and managed by changing the land use type. It is necessary to establish ecological protection areas or functional areas in Area I, artificial lawns or plantations shall be built in the river around the water body to intercept pollutants from non-point source pollution in Area II, and scientific and rational farming in the lower reaches of rivers can reduce non-point source pollution caused by farming.


Sign in / Sign up

Export Citation Format

Share Document