underlying surface
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 161)

H-INDEX

13
(FIVE YEARS 3)

Author(s):  
Wenxian Guo ◽  
Jianwen Hu ◽  
Hongxiang Wang

Changes in climate and the underlying surface are the main factors affecting runoff. Quantitative assessment of runoff characteristics, and determination of the climate and underlying surface contribution to changes in runoff are critical to water resources management and protection. Based on the runoff data from the Wulong Hydrological Station, combined with the Mann-Kendall test, Indicators of Hydrologic Alteration (IHA), Budyko hypothesis, and changes in climate and the underlying surface, this study comprehensively analyzed the runoff in the Wujiang River Basin (WRB). The results showed that: (1) The annual runoff of Wujiang River showed a downward trend, and an abrupt change occurred in 2005. (2) The overall hydrological change in WRB is 46%, reaching a moderate change. (3) The contribution rates of precipitation (P), potential evaporation (ET0), and underlying surface to runoff changes are 61.5%, 11.4%, and 26.9%, respectively. (4) After 2005, the WRB has become more arid, human activities have become more active, vegetation coverage has increased, and the built-up land has increased significantly.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 47
Author(s):  
Junjie Xu ◽  
Xichao Gao ◽  
Zhiyong Yang ◽  
Tianyin Xu

In recent years, the Weihe River basin has experienced dramatic changes and a sharp decrease in runoff, which has constrained the sustainable development of the local society, economy, and ecology. Quantitative attribution analysis of runoff changes in the Weihe River basin can help to illustrate reasons for dramatic runoff changes and to understand its complex hydrological response. In this paper, the trends of hydrological elements in the Weihe River basin from 1970 to 2019 were systematically analyzed using the M–K analysis method, and the effects of meteorological elements and underlying surface changes on runoff were quantitatively analyzed using the Budyko theoretical framework. The results show that potential evapotranspiration and precipitation in the Weihe River basin have no significant change in 1970–2019; runoff depth has an abrupt change around 1990 and then decrease significantly. The study period is divided into the base period (1970–1989), PΙ (1990–2009), and PII (2010–2019). Compared with the base period, the elasticity coefficients (absolute values) of each element show an increasing trend in PΙ and PII. The sensitivity of runoff to these coefficients is increasing. The sensitivity of the precipitation is the highest (2.72~3.17), followed by that of the underlying surface parameter (−2.01~−2.35); the sensitivity of the potential evapotranspiration is the weakest (−1.72~−2.17). In the PΙ period, the runoff depth decreased significantly due to the combination effects of precipitation and underlying surface with the values of 6.18 mm and 13.92 mm, respectively. In the PII period, rainfall turned to an increasing trend, contributing to the increase in runoff by 11.80 mm; the further increase in underlying surface parameters was the main reason for the decrease in runoff by 22.19 mm. The significant increase in runoff by 8.54 mm because of the increased rainfall, compared with the PΙ periods. Overall, the increasing underlying surface parameter makes the largest contribution to the runoff changes while the precipitation change is also an important factor.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yiyi Hu ◽  
Yi He

In recent decades, global climate change, especially human activities, has led to profound changes in the hydrological cycle and hydrological processes in watersheds. Taking the Yue River watershed in the Qinling Mountains in China as the study area, the Mann–Kendall test and Pettitt mutation test method were used to analyze the various characteristics of hydrological and climatic elements from 1960 to 2018. Then, the elastic coefficient method based on the Budyko framework was used to estimate the elastic coefficient of runoff change on each influencing factor. The results showed that the annual runoff decreased at a rate of 0.038 × 108 m3/a ( P > 0.05 ), and a significant abrupt change occurred in 1990. The annual precipitation and potential evapotranspiration (ET0) increased and decreased, with change rates of 0.614 mm/a and −0.811 mm/a ( P > 0.05 ), respectively. The elasticity coefficients of precipitation, ET0, and the underlying surface were 1.95, −0.95, and −0.85, respectively, indicating that annual runoff was most sensitive to the change in precipitation, followed by the change in ET0, and had the lowest sensitivity to the change in the underlying surface. Underlying surface change is the main factor of runoff decrease; the contribution is 89.07%. The total contribution of climate change to runoff change is 10.93%, in which the contributions of precipitation and ET0 are 17.59% and −6.66%, respectively. The NDVI reflecting underlying surface change has been increasing since 1990, which is an important reason for the runoff decrease.


Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1387
Author(s):  
Xuekai Chen ◽  
Guojian He ◽  
Xiaobo Liu ◽  
Bogen Li ◽  
Wenqi Peng ◽  
...  

The prevention and control of non-point source pollution is an important link in managing basin water quality and is an important factor governing the environmental protection of watershed water in China over the next few decades. The control of non-point source pollution relies on the recognition of the amount, location, and influencing factors. The watershed nonpoint source pollution mechanism model is an effective method to address the issue. However, due to the complexity and randomness of non-point source pollution, both the development and application of the watershed water environment model have always focused on the accuracy and rationality of model parameters. In this pursuit, the present study envisaged the temporal and spatial heterogeneity of non-point source pollution caused by the complex underlying surface conditions of the watershed, and the insufficient coverage of hydrological and water quality monitoring stations. A refined watershed non-point source pollution simulation method, combining the Monte Carlo analytic hierarchy process (MCAHP) and the sub-watershed parameter transplantation method (SWPT), was established on the basis of the migration and transformation theory of the non-point source pollution, considering the index selection, watershed division, sub-watershed simulation, and parameter migration. Taking the Erhai Lake, a typical plateau lake in China, as the representative research object, the MCAHP method effectively reduced the uncertainty of the weights of the watershed division indexes compared to the traditional AHP method. Furthermore, compared to the traditional all watershed parameter simulation (AWPS) approach, the simulation accuracy was improved by 40% using the SWPT method, which is important for the prevention and control of non-point source pollution in large-scale watersheds with significant differences in climatic and topographic conditions. Based on the simulation results, the key factors affecting the load of the non-point source pollution in the Erhai watershed were identified. The results showed that the agricultural land in Erhai Lake contributed a majority of the load for several reasons, including the application of nitro phosphor complex fertilizer. Among the different soil types, paddy soil was responsible for the largest pollution load of total nitrogen and total phosphorus discharge into the lake. The zones with slopes of 0°‒18° were found to be the appropriate area for farming. Our study presents technical methods for the assessment, prevention, and control of non-point source pollution load in complex watersheds.


2021 ◽  
Vol 153 (A3) ◽  
Author(s):  
K I Matveev

The motion stability is the most important problem of high-speed marine vehicles that utilize aerodynamic support. A simplified analysis and calculations of longitudinal static stability of several basic platforms moving above water are carried out in this study. The analysis is based on the extreme ground effect theory and the assumption of hydrostatic deformations of the water surface. Effects of the underlying surface type, Froude number, and several geometrical parameters on main aerodynamic characteristics, including the static stability margin, are presented. If the underlying surface is water instead of a rigid plane, the static stability worsens for platforms with flat or S-shaped lower surfaces, but it slightly improves for a horizontal platform with a flap. The static stability margin remains positive for S-shaped profiles at sufficiently low Froude numbers, while it is negative for other configurations.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vladimir Kuznetsov ◽  
Olga Bednova ◽  
Natalia Tarasova

Abstract To assess the quality of atmospheric air, the authors propose to apply the process of dry deposition of impurities on an artificial underlying surface that binds impurities in contact with it. The mass of these impurities is calculated upon laboratory exposure, after being transferred to an aqueous solution. The ease of absorber fabrication and the low cost facilitate the monitoring of air pollution at various points in woodlands, where the stationary stations for air-pollution-monitoring are very difficult and costly to arrange. A large number of control points makes it possible to identify forest areas with the highest levels of air pollution. A dynamic air-quality study at one of the monitoring points is necessary and sufficient to determine the concentration of impurities. The authors surveyed an urban forest using the proposed method, and the survey results confirmed that areas with an elevated concentration of airborne nitrogen dioxide exist within the woodland. This can lead to soil eutrophication and changes in forest biodiversity at the species and ecosystem levels.


Author(s):  
Serghei Travin

The possibilities of application of the Monte-Carlo method for simulating the consequences of pollutants emissions with specific adsorption on the underlying surface were considered. Effective methods of obtaining kinetic curves for the concentration of a pollutant for a selected square on the field and constructing contamination profiles for a specified time are analysed. The estimation of the necessary parameters of the model for obtaining high-quality kinetic curves was performed and recommendations for their optimization are given. Specific fronts for the spot propagation were obtained and visualised.


Author(s):  
Le Hung Trinh ◽  
V.R. Zablotskii

Underlying surface temperature is an important parameter of underlying surface thermal radiation and can be used in monitoring forest fires, coal fires, urban thermal radiation and developing climate models. Ground-based observations provide temperature information for small areas around weather stations and in fact cannot provide a high density of surface temperature data. Remote sensing technologies are promising in this respect. However, due to the low spatial resolution in the infrared channel, the surface temperature calculated from Landsat and Aster images does not always have the required detail needed when studying small areas. The results of images from Sentinel 2A and Landsat 8 satellites combination (joint digital processing) made in order to increase spatial resolution of underlying surface temperature are presented. Comparison of surface temperature extreme values shows that in spite of small difference in extreme values of temperature, the spatial field of temperature in case of combined images was more detailed and variable. This is evidenced by a significant increase in the variability of the temperature standard deviation. Direct visual observations of image fragments also confirm that combining Sentinel 2A and Landsat 8 images increases the spatial resolution of the surface temperature when compared to the Landsat 8 image


Author(s):  
Andrey Nikolaevich Romanov ◽  
Ilya Vladimirovich Khvostov ◽  
Vasiliy Vladimirovich Tikhonov ◽  
Evgeniy Alexandrovich Sharkov

Specific emissivity features of swamps and wetlands of Western Siberia were studied for changing seasonal conditions with the use of daily data of satellite microwave sounding. The research technique involved the analysis of brightness temperatures of the underlying surface at the test sites. Variations in seasonal dynamics of brightness temperatures were mainly caused by different rates of seasonal freezing of the upper waterlogged layer of the underlying surface and dielectric characteristics of water containing natural media (water body, soil, vegetation). We analyzed long-term trends in seasonal and annual dynamics of brightness temperatures of the underlying surface and estimated hydrological changes in the Arctic and Subarctic. The findings open up new possibilities for using satellite data in the microwave range for studying natural seasonal dynamic processes and predicting hazardous hydrological phenomena.


Sign in / Sign up

Export Citation Format

Share Document