Image-based approach for calculating sediment transport rate and estimating seabed shear stress during scour

2014 ◽  
pp. 611-620
Author(s):  
S Draper ◽  
L Cheng ◽  
D White ◽  
S Leckie
2021 ◽  
Vol 9 (9) ◽  
pp. 936
Author(s):  
Yeulwoo Kim ◽  
Ryan S. Mieras ◽  
Dylan Anderson ◽  
Timu Gallien

SedWaveFoam, an OpenFOAM-based two-phase model that concurrently resolves the free surface wave field, and the bottom boundary layer is used to investigate sediment transport throughout the entire water column. The numerical model was validated with large-scale wave flume data for sheet flow driven by shoaling skewed-asymmetric waves with two different grain sizes. Newly obtained model results were combined with previous nonbreaking and near-breaking wave cases to develop parameterization methods for time-dependent bed shear stress and sediment transport rate under various sediment sizes and wave conditions. Gonzalez-Rodriguez and Madsen (GRM07) and quasi-steady approaches were compared for intra-wave bed shear stress. The results show that in strongly asymmetric flows, considering the separated boundary layer development processes at each half wave-cycle (i.e., GRM07) is essential to accurately estimating bed shear stress and highlights the impact of phase-lag effects on sediment transport rates. The quasi-steady approach underpredicts (∼60%) sediment transport rates, especially for fine grains under large velocity asymmetry. A modified phase-lag parameter, incorporating velocity asymmetry, sediment stirring, and settling processes is proposed to extend the Meyer-Peter and Mueller type power law formula. The extended formula accurately estimated the enhanced net onshore sediment transport rate observed under skewed-asymmetric wave conditions.


2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Taufiqur Rachman ◽  
Suntoyo Suntoyo

<p>In general, waves in coastal environments are irregular and have a random shape with a height and period that was not constant. The accuracy of sediment transport rate prediction is the most important stages in the study of morphology and coastal marine environments. In addition, the predictive model of coastal morphology is more efficient to use the bottom shear stress calculation approach for practical purposes rather than a more complex approach to the modeling of two phases. In this paper, the calculation of sediment transport was based on the bottom shear stress modelling purposed with data validation from the experimental results in the turbulent bottom boundary layer over rough bed under irregular waves. The new approach to estimate the bottom shear stress was based on combining velocity and acceleration terms. Furthermore, a new approach of the bottom shear stress was applied to formulate the sheet flow sediment transport rate for irregular waves by using the experimental data from Dibadjnia and Watanabe (1998) and the empirical formula was found.</p> <p>Keywords: sediment transport, bottom shear stress, irregular waves</p>


2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Taufiqur Rachman ◽  
Suntoyo Suntoyo

In general, waves in coastal environments are irregular and have a random shape with a height and period that was not constant. The accuracy of sediment transport rate prediction is the most important stages in the study of morphology and coastal marine environments. In addition, the predictive model of coastal morphology is more efficient to use the bottom shear stress calculation approach for practical purposes rather than a more complex approach to the modeling of two phases. In this paper, the calculation of sediment transport was based on the bottom shear stress modelling purposed with data validation from the experimental results in the turbulent bottom boundary layer over rough bed under irregular waves. The new approach to estimate the bottom shear stress was based on combining velocity and acceleration terms. Furthermore, a new approach of the bottom shear stress was applied to formulate the sheet flow sediment transport rate for irregular waves by using the experimental data from Dibadjnia and Watanabe (1998) and the empirical formula was found. Keywords: sediment transport, bottom shear stress, irregular waves


2018 ◽  
Vol 6 (4) ◽  
pp. 989-1010 ◽  
Author(s):  
Chenge An ◽  
Andrew J. Moodie ◽  
Hongbo Ma ◽  
Xudong Fu ◽  
Yuanfeng Zhang ◽  
...  

Abstract. Sediment mass conservation is a key factor that constrains river morphodynamic processes. In most models of river morphodynamics, sediment mass conservation is described by the Exner equation, which may take various forms depending on the problem in question. One of the most widely used forms of the Exner equation is the flux-based formulation, in which the conservation of bed material is related to the stream-wise gradient of the sediment transport rate. An alternative form of the Exner equation, however, is the entrainment-based formulation, in which the conservation of bed material is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. Here we represent the flux form in terms of the local capacity sediment transport rate and the entrainment form in terms of the local capacity entrainment rate. In the flux form, sediment transport is a function of local hydraulic conditions. However, the entrainment form does not require this constraint: only the rate of entrainment into suspension is in local equilibrium with hydraulic conditions, and the sediment transport rate itself may lag in space and time behind the changing flow conditions. In modeling the fine-grained lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment (nonequilibrium) form rather than a flux (equilibrium) form, in consideration of the condition that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations have not been comprehensively studied to date. Here we study this problem by comparing the results predicted by both the flux form and the entrainment form of the Exner equation under conditions simplified from the lower Yellow River (i.e., a significant reduction of sediment supply after the closure of the Xiaolangdi Dam). We use a one-dimensional morphodynamic model and sediment transport equations specifically adapted for the lower Yellow River. We find that in a treatment of a 200 km reach using a single characteristic bed sediment size, there is little difference between the two forms since the corresponding adaptation length is relatively small. However, a consideration of sediment mixtures shows that the two forms give very different patterns of grain sorting: clear kinematic waves occur in the flux form but are diffused out in the entrainment form. Both numerical simulation and mathematical analysis show that the morphodynamic processes predicted by the entrainment form are sensitive to sediment fall velocity. We suggest that the entrainment form of the Exner equation might be required when the sorting process of fine-grained sediment is studied, especially when considering relatively short timescales.


1990 ◽  
pp. 295-296
Author(s):  
Shunsuke IKEDA ◽  
Makoto IFUKU ◽  
Tadao KAKINUMA ◽  
Hiromitsu GOTOH

Sign in / Sign up

Export Citation Format

Share Document