Research on a strain-based shape reconstruction method using the Fiber Bragg Grating sensors

2021 ◽  
Vol 2087 (1) ◽  
pp. 012040
Author(s):  
Zhuang Liang ◽  
Yulin Zhang

Abstract To solve the problem that the curvature information of the large flexible rocket body affects the attitude control of the rocket body, a shape reconstruction method based on optical fiber strain sensing is proposed in this paper, which can measure the bow deformation and vibration state of the rocket in real time as the input data for adjusting the attitude control of the rocket. In this scheme, the dynamics of flexible rocket can be solved stably and quickly. In order to verify the reconstruction method, the beam model was used as the experimental analysis object, and the vibration information such as deformation of the beam model was identified through the strain value measured by fiber Bragg grating (FBG) sensors. The results show that the deformation reconstruction method can well restore the deformation and rotation angle of the beam system and has good stability and real-time performance. This method can provide a theoretical basis for the real-time deformation calculation and high-precision attitude control of future flexible launch vehicle.


2014 ◽  
Vol 19 (4) ◽  
pp. 1115-1126 ◽  
Author(s):  
Roy J. Roesthuis ◽  
Marco Kemp ◽  
John J. van den Dobbelsteen ◽  
Sarthak Misra

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4272
Author(s):  
Oscar de la Torre ◽  
Ignazio Floris ◽  
Salvador Sales ◽  
Xavier Escaler

The present paper assesses the performance and characteristics of fiber Bragg grating sensors, with a special interest in their applications in hydraulic machinery and systems. The hydropower industry is turning to this technology with high expectations of obtaining high quality data to validate and calibrate numerical models that could be used as digital twins of key assets, further strengthening the sector’s relevant position within industry 4.0. Prior to any validation, fiber Bragg grating sensors’ ability to perform well underwater for long periods of time with minimal degradation, and their ease of scalability, drew the authors´ attention. A simplified modal analysis of a partially submerged beam is proposed here as a first step to validate the potential of this type of technology for hydropower applications. Fiber Bragg grating sensors are used to obtain the beam’s natural frequencies and to damp vibrations under different conditions. The results are compared with more established waterproof electric strain gauges and a laser vibrometer with good agreement. The presence of several sensors in a single fiber ensures high spatial resolution, fundamental to precisely determine vibration patterns, which is a main concern in this industry. In this work, the beam’s vibration patterns have been successfully captured under different excitations and conditions.


2016 ◽  
Author(s):  
Saurabh Kumar ◽  
V. Shrikanth ◽  
Bharadwaj Amrutur ◽  
Sundarrajan Asokan ◽  
M. S. Bobji

1999 ◽  
Author(s):  
Francisco M. Araujo ◽  
M. Teixeira ◽  
Luis A. A. Ferreira ◽  
Ireneu M. Dias ◽  
A. Quintela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document