GHG Emissions from Municipal Wastewater Treatment in Latin America

2015 ◽  
pp. 370-387
2012 ◽  
Vol 40 (9) ◽  
pp. 926-932 ◽  
Author(s):  
Adalberto Noyola ◽  
Alejandro Padilla-Rivera ◽  
Juan Manuel Morgan-Sagastume ◽  
Leonor Patricia Güereca ◽  
Flor Hernández-Padilla

2012 ◽  
Vol 40 (10) ◽  
pp. 1208-1209
Author(s):  
Adalberto Noyola ◽  
Alejandro Padilla-Rivera ◽  
Juan Manuel Morgan-Sagastume ◽  
Leonor Patricia Güereca ◽  
Flor Hernández-Padilla

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1611 ◽  
Author(s):  
Daniela Fighir (Arsene) ◽  
Carmen Teodosiu ◽  
Silvia Fiore

Municipal wastewater treatment plants (MWWTPs) are essential infrastructures in any urban context, but they may be considered as a potential source of greenhouse gas (GHG) emissions and should be coherent with European Union (EU) policy on energy efficiency. This study presents a sustainability evaluation of four Italian and Romanian MWWTPs in terms of energy efficiency and greenhouse gas emissions using Energy Performance and Carbon Emissions Assessment and Monitoring (ECAM) tool software. The obtained results indicated that biogas recovery improved energy performances, while the largest contributions in terms of GHG emissions were in all cases caused by energy consumption and methane produced during wastewater treatment. The Romanian plants exhibited higher GHG emissions, compared to the Italian plants, mainly because of the different values of national conversion factors for grid electricity (0.41 kg CO2/kWh for Italy and 1.07 kg CO2/kWh for Romania). Two scenarios aimed at enhancing the overall sustainability were hypothesized, based on increasing the serviced population or energy efficiency, achieving significant improvements. A sustainability assessment of MWWTPs should be adopted as a useful tool to help water utilities to introduce low-energy, low-carbon management practices as well as being useful for policy recommendations.


2010 ◽  
Vol 62 (10) ◽  
pp. 2256-2262 ◽  
Author(s):  
Kentaro Mizuta ◽  
Masao Shimada

Reduction of greenhouse gas (GHG) emissions is one of the most important tasks facing municipal WWTPs. Electric power consumption typically accounts for about 90% of the total energy consumption. This study presents a benchmarking analysis of electric power consumption. The specific power consumption (SPC) ranged from 0.44 to 2.07 kWh/m3 for oxidation ditch plants and from 0.30 to 1.89 kWh/m3 for conventional activated sludge plants without sludge incineration. Observed differences of the SPC can be attributed to the difference in the scale of plants rather than to different kinds of wastewater treatment processes. It was concluded that economical benefits by centralizing treatment had contributed significantly to the reduction of energy consumption. Further analysis was carried out on the plant that had shown an extremely small SPC value of 0.32 kWh/m3. In this WWTP, a large amount of digestion gas was generated by anaerobic digestion. In particular, it was used to generate power using phosphoric acid fuel cells to generate approximately 50% of the energy consumed in the plant. It was calculated that this plant had reduced the overall SPC by 0.17 kWh/m3. The effect of power generation using digestion gas demonstrated clearly the advantage of implementing energy recovery schemes.


2006 ◽  
Vol 5 (4) ◽  
pp. 685-692
Author(s):  
Elisabeta Chirila ◽  
Ionela Carazeanu Popovici ◽  
Techin Ibadula ◽  
Alice Iordache

Sign in / Sign up

Export Citation Format

Share Document