Carbon Footprint of Agricultural Products

2015 ◽  
pp. 450-469 ◽  
Author(s):  
Karina Guallasamin Constante ◽  
Débora Simón-Baile

Ecuador es el tercer exportador de rosas a nivel mundial. Un factor clave para la competitividad internacional es calcular y reducir las emisiones de gases de efecto invernadero (GEI). Por ello, se calculó la huella de carbono (HC) del cultivo de rosas en Ecuador, tomando como caso de estudio la Empresa Ecoroses S.A. en el año 2015. La empresa está ubicada en el cantón Mejía, provincia de Pichincha y dedica el 100% de su producción a las rosas. La HC se calculó mediante dos metodologías: GHG Protocol y PAS 2050, considerando los límites del sistema “de la cuna a la puerta”. Los factores de emisión fueron recopilados de bases de datos internacionales como IPCC y Ecoinvent v2.2. El resultado de la HC fue de 3,75 kg CO2eq/kg de rosa exportada. Las tres fuentes de emisión de GEI que más afectan son: los productos agrícolas (37,7%), la energía eléctrica (13,3%) y el uso de combustibles fósiles (10,95%). Esta HC duplica a la del cacao seco y es más de 8 veces mayor que la del banano nacional. Por ello, se propone implementar buenas prácticas ambientales para reducir los GEI, en concreto, fertilizantes orgánicos, ahorro energético y biocombustibles. Abstract Ecuador is the third largest exporter of roses worldwide. A key factor for the international competitiveness is to calculate and reduce greenhouse gases (GHG). For this reason, we calculated the carbon footprint (CF) of the cultivation of roses in Ecuador, taking as a case study the Company Ecoroses S.A. in the year 2015. The company is located in the canton Mejia, province of Pichincha, and dedicates 100% of its production to roses. The CF was calculated using two methodologies, GHG Protocol and PAS 2050, considering the limits of the system “from the cradle to the door”. The emission factors were compiled from international databases such as IPCC and Ecoinvent v2.2. The result of the CF was 3,75 kg CO2eq/kg of rose exported. The three sources of emission of GHG that most affect are: agricultural products (37,7%), electrical energy (13,3%), and the use of fossil fuels (10,95%). This CF doubles that of dry cocoa, and is more than 8 times higher than that of domestic bananas. Therefore, the implementation of good environmental practices is proposed to reduce GHG, specifically, organic fertilizers, energy saving, and biofuels.


Author(s):  
Esen Gökçe Özdamar ◽  
Murat AteÅŸ

In the circular economy, bio-based plastics or bioplastics as emerging innovative materials are increasingly being used in many industries from packaging to building materials and agricultural products to electronic and biomedical devices, there is an increasing research on the evaluation of bioplastics in architecture, both as a material or as a design element in interior design. Therefore, this article is a step towards understanding the importance of bioplastic materials in the circular economies and in architecture, regarding the negative carbon footprint and long-term environmental effects of fossil-based plastics.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 138 ◽  
Author(s):  
Allen H. Hu ◽  
Chia-Hsiang Chen ◽  
Lance Hongwei Huang ◽  
Ming-Hsiu Chung ◽  
Yi-Chen Lan ◽  
...  

Climate change is an important global environmental threat. Agriculture aggravates climate change by increasing greenhouse gas (GHG) emissions, and in response, climate change reduces agricultural productivity. Consequently, the modern agricultural development mode has progressively transformed into a kind of sustainable development mode. This study aimed to determine the environmental impact and carbon footprint of Dongshan tea from Yilan County. Environmental impact was assessed with use of SimaPro version 8.0.2 and IMPACT2002+. Results showed that climate change has the largest impact upon it in general, followed by human health, natural resources, and ecosystem quality. Furthermore, with use of the IPCC 2007 100a method for carbon footprint of products (CFP), conventional tea was found to have a CFP of 7.035 kgCO2-e, and its main contributors are the raw material (35.15%) and consumer use (45.58%) phases. From this case study, we found that the hotspots of the life cycle of environmental impact of Taiwanese tea mainly come from fertilizer input during the raw material phase, electricity use during manufacturing, and electricity use during water boiling in the consumer use phase (which contributes the largest impact). We propose the ways for consumers to use of highly efficient boiling water facilities and heating preservation, and the government must market the use of organic fertilizers in the national policy subsidies, and farmers have to prudent use of fertilizers and promote the use of local raw fertilizers, and engagement in direct sales for reducing the environmental impacts and costs of agricultural products and thus advancing sustainable agriculture development.


2016 ◽  
Vol 56 (3) ◽  
pp. 423 ◽  
Author(s):  
M. R. Garg ◽  
B. T. Phondba ◽  
P. L. Sherasia ◽  
H. P. S. Makkar

In recent years, the concept of life cycle assessment (LCA) has proven to be useful because of its potential to assess the integral environmental impacts of agricultural products. Developing countries such as India are good candidates for LCA research because of the large contribution of smallholder dairy system to the production of agricultural products such as milk. Therefore, the aim of the present study was to explore the carbon footprint of milk production under the multi-functional smallholder dairy system in Anand district of Gujarat state, western India. A cradle-to-farm gate LCA was performed by covering 60 smallholder dairy farms within 12 geographically distinct villages of the district. The average farm size was 4.0 animals per farm, and the average number of each category of animal was 2.5 lactating cows, 1.4 lactating buffaloes, 1.8 replacement cows, 1.6 replacement buffaloes, 2.0 retired cows, 1.3 retired buffaloes and 1.0 ox per farm. The emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) on CO2-equivalent (CO2-eq) basis from feed production, enteric fermentation and manure management were allocated to fat- and protein-corrected milk (FPCM) on the basis of mass balance, price and digestibility. Emissions of CO2, CH4 and N2O from cattle contributed 11.0%, 75.4% and 13.6%, respectively, to the total greenhouse gas (GHG) emissions. The contribution of CO2, CH4 and N2O from buffalo was 8.2%, 80.5% and 11.3%, respectively, to the total GHG emissions of farms. The average carbon footprint (CF) of cow milk was 2.3, 1.9 and 2.0 kg CO2-eq/kg FPCM on mass, economic and digestibility basis, respectively, whereas for buffalo, milk CF was 3.0, 2.5 and 2.7 kg CO2-eq/kg FPCM, respectively. On the basis of digestibility allocation, emissions from retired (>10 years of age and incapable of or ceased producing milk) cows and buffaloes were 1571.3 and 2556.1 kg CO2-eq/retirement year, respectively. Overall, the CF of milk production under the smallholder dairy system in Anand district was 2.2 kg CO2-eq/kg FPCM, which reduced to 1.7 kg CO2-eq/kg FPCM when milk, manure, finance and insurance were considered as economic functions of the smallholder system. The CF was lower by 65% and 22% for cow and buffalo milk, respectively, than were the estimates of FAO for southern Asia, and this was mainly attributed to difference in the sources of GHG emissions, manure management systems, feed digestibility and milk production data used by FAO.


Sign in / Sign up

Export Citation Format

Share Document