Hydrochemical characteristics of pressurized brine in Mahai potash area in Qinghai province

2015 ◽  
pp. 27-32
2000 ◽  
Vol 36 (6) ◽  
pp. 15
Author(s):  
Ye. A. Kuftarkova ◽  
N. P. Kovrigina ◽  
N. Yu. Rodionova

2013 ◽  
Vol 21 (4) ◽  
pp. 487 ◽  
Author(s):  
Fang ZHANG ◽  
Fa-Dong LI ◽  
Jing LI ◽  
Shuai SONG ◽  
Wen-Jing CAI ◽  
...  

2010 ◽  
Vol 26 (3) ◽  
pp. 326-332
Author(s):  
Chuan-chuan ZHAO ◽  
Xiao-yang YANG ◽  
Feng-chen ZHANG ◽  
Xing-zhong YANG ◽  
Xu DONG ◽  
...  

2019 ◽  
Vol 98 ◽  
pp. 01034 ◽  
Author(s):  
Mingjun Liu ◽  
Changlai Xiao ◽  
Xiujuan Liang

In this study, a hydrochemical investigation was conducted in Shuangliao city to identify the hydrochemical characteristics and the quality of groundwater using descriptive statistics and correlation matrices. And on that basis, combined with Analytic hierarchy process (AHP), an improved two-level fuzzy comprehensive evaluation method is used to evaluate the groundwater quality. The results indicate that the major cations and anions in groundwater are Ca2+ and HCO3-, respectively. The chemical types are mainly HCO3—Ca type water, some areas are complicated due to the influence of human activities. The evaluation results show that the water quality in the area is mostly III type water, and the groundwater quality in some areas is IV or V water due to the influence of primary geological conditions or human activities. The groundwater quality in the East Liaohe River Valley and Shuangliao urban area is relatively poor, and in the northwest part which is the saline alkali soil area is also relatively poor.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 456
Author(s):  
Huimin Jiang ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Xi Zhou ◽  
Fanglong Wang ◽  
...  

We investigated water-soluble ions (WSIs) of aerosol samples collected from 2016 to 2017 in Lanzhou, a typical semi-arid and chemical-industrialized city in Northwest China. WSIs concentration was higher in the heating period (35.68 ± 19.17 μg/m3) and lower in the non-heating period (12.45 ± 4.21 μg/m3). NO3−, SO42−, NH4+ and Ca2+ were dominant WSIs. The concentration of SO42− has decreased in recent years, while the NO3− level was increasing. WSIs concentration was affected by meteorological factors. The sulfur oxidation and nitrogen oxidation ratios (SOR and NOR) exceeded 0.1, inferring the vital contribution of secondary transformation. Meanwhile higher O3 concentration and temperature promoted the homogeneous reaction of SO2. Lower temperature and high relative humidity (RH) were more suitable for heterogeneous reactions of NO2. Three-phase cluster analysis illustrated that the anthropogenic source ions and natural source ions were dominant WSIs during the heating and non-heating periods, respectively. The backward trajectory analysis and the potential source contribution function model indicated that Lanzhou was strongly influenced by the Hexi Corridor, northeastern Qinghai–Tibetan Plateau, northern Qinghai province, Inner Mongolia Plateau and its surrounding cities. This research will improve our understanding of the air quality and pollutant sources in the industrial environment.


Sign in / Sign up

Export Citation Format

Share Document