Zeroing Dynamics, Gradient Dynamics, and Newton Iterations

2018 ◽  
Author(s):  
Yunong Zhang ◽  
Lin Xiao ◽  
Zhengli Xiao ◽  
Mingzhi Mao
2013 ◽  
Vol 805-806 ◽  
pp. 716-720
Author(s):  
Tao Xu ◽  
Tian Long Shao ◽  
Dong Fang Zhang

Combined with the contents of the study-PSS low-pass link parameter identification. Least-squares method is selected. Using least-square method for PSS low-pass link mathematical model are also deduced. For the results, because of the mathematical model is solving nonlinear equations, cannot used by the Newton method directly. So we choose to use Newton iterations, with this feature, choose to use MATLAB software to solve the equation. Identification of the use of MATLAB software lags after the PSS parameters obtained recognition results compared with national standards, identifying and verifying the practicability.


2004 ◽  
Vol 99 (1) ◽  
pp. 127-148 ◽  
Author(s):  
Richard H. Byrd ◽  
Marcelo Marazzi ◽  
Jorge Nocedal

2012 ◽  
Vol 119 (8) ◽  
pp. 1711-1773 ◽  
Author(s):  
Carine Pivoteau ◽  
Bruno Salvy ◽  
Michèle Soria

2015 ◽  
Vol 780 ◽  
pp. 60-98 ◽  
Author(s):  
J. M. Lawson ◽  
J. R. Dawson

The statistics of the velocity gradient tensor $\unicode[STIX]{x1D63C}=\boldsymbol{{\rm\nabla}}\boldsymbol{u}$, which embody the fine scales of turbulence, are influenced by turbulent ‘structure’. Whilst velocity gradient statistics and dynamics have been well characterised, the connection between structure and dynamics has largely focused on rotation-dominated flow and relied upon data from numerical simulation alone. Using numerical and spatially resolved experimental datasets of homogeneous turbulence, the role of structure is examined for all local (incompressible) flow topologies characterisable by $\unicode[STIX]{x1D63C}$. Structures are studied through the footprints they leave in conditional averages of the $Q=-\text{Tr}(\unicode[STIX]{x1D63C}^{2})/2$ field, pertinent to non-local strain production, obtained using two complementary conditional averaging techniques. The first, stochastic estimation, approximates the $Q$ field conditioned upon $\unicode[STIX]{x1D63C}$ and educes quantitatively similar structure in both datasets, dissimilar to that of random Gaussian velocity fields. Moreover, it strongly resembles a promising model for velocity gradient dynamics recently proposed by Wilczek & Meneveau (J. Fluid Mech., vol. 756, 2014, pp. 191–225), but is derived under a less restrictive premise, with explicitly determined closure coefficients. The second technique examines true conditional averages of the $Q$ field, which is used to validate the stochastic estimation and provide insights towards the model’s refinement. Jointly, these approaches confirm that vortex tubes are the predominant feature of rotation-dominated regions and additionally show that shear layer structures are active in strain-dominated regions. In both cases, kinematic features of these structures explain alignment statistics of the pressure Hessian eigenvectors and why local and non-local strain production act in opposition to each other.


2018 ◽  
Vol 34 (1) ◽  
pp. 85-92
Author(s):  
ION PAVALOIU ◽  

We consider an Aitken-Steffensen type method in which the nodes are controlled by Newton and two-step Newton iterations. We prove a local convergence result showing the q-convergence order 7 of the iterations. Under certain supplementary conditions, we obtain monotone convergence of the iterations, providing an alternative to the usual ball attraction theorems. Numerical examples show that this method may, in some cases, have larger (possibly sided) convergence domains than other methods with similar convergence orders.


Sign in / Sign up

Export Citation Format

Share Document