Cylindrical Probe with a Constant Temperature: Determination of the Formation Thermal Conductivity and Contact Thermal Resistance

2015 ◽  
pp. 176-180
2020 ◽  
Vol 40 (8) ◽  
pp. 622-627
Author(s):  
I. V. Lavrov ◽  
A. A. Kochetygov ◽  
V. V. Bardushkin ◽  
A. P. Sychev ◽  
V. B. Yakovlev

Author(s):  
Danie`le Fournier ◽  
Jean Paul Roger ◽  
Christian Fretigny

Lateral heat diffusion thermoreflectance is a very powerful tool for determining directly the thermal diffusivity of layered structures. To do that, experimental data are fitted with the help of a heat diffusion model in which the ratio between the thermal conductivity k and the thermal diffusivity D of each layer is fixed, and the thermal properties of the substrate are known. We have shown in a previous work that it is possible to determine independently the thermal diffusivity and the thermal conductivity of a metallic layer deposited on an insulator, by taking into consideration all the data obtained at different modulation frequencies. Moreover, it is well known that to prevent a lack of adhesion of a gold film deposited on substrates like silica, an intermediate very thin (Cr or Ti) layer is deposited to assure a good thermal contact. We extend our previous work: the asymptotic behaviour determination of the surface temperature wave at large distances from the modulated point heat source for one layer deposited on the substrate to the two layers model. In this case (very thin adhesion coating whose thermal properties and thickness are known), it can be establish that the thermal diffusivity and the thermal conductivity of the top layer can still be determined independently. It is interesting to underline that the calculus can also be extended to the case of a thermal contact resistance which has often to be taken into account between two solids. We call thermal resistance a very thin layer exhibiting a very low thermal conductivity. In this case, the three parameters we have to determine are the thermal conductivity and the thermal diffusivity of the layer and the thermal resistance. We will show that, in this case, the thermal conductivity of the layer is always obtained independently of a bound of the couple thermal resistance – thermal diffusivity, the thermal diffusivity being under bounded and the thermal resistance lower bounded. Experimental results on thin gold layers deposited on silica with and without adhesion layers are presented to illustrate the method. Discussions on the accuracy will also be presented.


1992 ◽  
Vol 35 (11) ◽  
pp. 1298-1300
Author(s):  
V. P. Belokurov ◽  
V. I. Klyuchnikov ◽  
S. V. Belokurov

2021 ◽  
Vol 346 ◽  
pp. 03049
Author(s):  
Alexander Denisenko ◽  
Roman Grishin ◽  
Liubov Podkruglyak

The use of the temperature criterion in the design of metal-cutting machines, determined on the basis of models that take into account the contact thermal resistances, is an objective necessity. These models should take into account to the maximum extent the actual conditions of contact of parts in the design under consideration, determined by the deviations of the mating surfaces from the ideal shape. The article presents the results of numerical modeling based on the finite element method of the formation of the contact thermal resistance and the evaluation of the influence of the parameters of the intermediate layer (pseudo-environment) that occurs in the contact zone of surfaces with macro-deviations on the passage of the heat flow. The obtained results allowed us to identify the most significant of the considered parameters. It is established that when modeling a pseudo-environment, it is necessary to take into account the coefficient of its thermal conductivity, the size, location and integrity of the actual contact zone.


2020 ◽  
pp. 36-40
Author(s):  
I.V. Lavrov ◽  
A.A. Kochetygov ◽  
V.V. Bardushkin ◽  
A.P. Syichev ◽  
V.B. Yakovlev

A method is proposed for predicting the effective thermal conductivity of a matrix composite with several types of spherical inclusions with contact thermal resistance at the boundary of the matrix and inclusions. The method is based on a generalized effective-field approximation for an inhomogeneous medium with inclusions with a shell. Model calculations were performed for a matrix tribocomposite with two types of inclusions. Keywords: effective thermal conductivity, contact thermal resistance, composite material, matrix, inclusion with a shell, Maxwell—Garnett approximation, generalized effective-field approximation. [email protected]


Sign in / Sign up

Export Citation Format

Share Document